Do you want to publish a course? Click here

Building a Benchmark Dataset and Classifiers for Sentence-Level Findings in AP Chest X-rays

60   0   0.0 ( 0 )
 Added by Ken C. L. Wong
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Chest X-rays are the most common diagnostic exams in emergency rooms and hospitals. There has been a surge of work on automatic interpretation of chest X-rays using deep learning approaches after the availability of large open source chest X-ray dataset from NIH. However, the labels are not sufficiently rich and descriptive for training classification tools. Further, it does not adequately address the findings seen in Chest X-rays taken in anterior-posterior (AP) view which also depict the placement of devices such as central vascular lines and tubes. In this paper, we present a new chest X-ray benchmark database of 73 rich sentence-level descriptors of findings seen in AP chest X-rays. We describe our method of obtaining these findings through a semi-automated ground truth generation process from crowdsourcing of clinician annotations. We also present results of building classifiers for these findings that show that such higher granularity labels can also be learned through the framework of deep learning classifiers.



rate research

Read More

We introduce a new benchmark dataset, namely VinDr-RibCXR, for automatic segmentation and labeling of individual ribs from chest X-ray (CXR) scans. The VinDr-RibCXR contains 245 CXRs with corresponding ground truth annotations provided by human experts. A set of state-of-the-art segmentation models are trained on 196 images from the VinDr-RibCXR to segment and label 20 individual ribs. Our best performing model obtains a Dice score of 0.834 (95% CI, 0.810--0.853) on an independent test set of 49 images. Our study, therefore, serves as a proof of concept and baseline performance for future research.
While image retrieval and instance recognition techniques are progressing rapidly, there is a need for challenging datasets to accurately measure their performance -- while posing novel challenges that are relevant for practical applications. We introduce the Google Landmarks Dataset v2 (GLDv2), a new benchmark for large-scale, fine-grained instance recognition and image retrieval in the domain of human-made and natural landmarks. GLDv2 is the largest such dataset to date by a large margin, including over 5M images and 200k distinct instance labels. Its test set consists of 118k images with ground truth annotations for both the retrieval and recognition tasks. The ground truth construction involved over 800 hours of human annotator work. Our new dataset has several challenging properties inspired by real world applications that previous datasets did not consider: An extremely long-tailed class distribution, a large fraction of out-of-domain test photos and large intra-class variability. The dataset is sourced from Wikimedia Commons, the worlds largest crowdsourced collection of landmark photos. We provide baseline results for both recognition and retrieval tasks based on state-of-the-art methods as well as competitive results from a public challenge. We further demonstrate the suitability of the dataset for transfer learning by showing that image embeddings trained on it achieve competitive retrieval performance on independent datasets. The dataset images, ground-truth and metric scoring code are available at https://github.com/cvdfoundation/google-landmark.
260 - Hang Yu , Yufei Xu , Jing Zhang 2021
Accurate animal pose estimation is an essential step towards understanding animal behavior, and can potentially benefit many downstream applications, such as wildlife conservation. Previous works only focus on specific animals while ignoring the diversity of animal species, limiting the generalization ability. In this paper, we propose AP-10K, the first large-scale benchmark for general animal pose estimation, to facilitate the research in animal pose estimation. AP-10K consists of 10,015 images collected and filtered from 23 animal families and 60 species following the taxonomic rank and high-quality keypoint annotations labeled and checked manually. Based on AP-10K, we benchmark representative pose estimation models on the following three tracks: (1) supervised learning for animal pose estimation, (2) cross-domain transfer learning from human pose estimation to animal pose estimation, and (3) intra- and inter-family domain generalization for unseen animals. The experimental results provide sound empirical evidence on the superiority of learning from diverse animals species in terms of both accuracy and generalization ability. It opens new directions for facilitating future research in animal pose estimation. AP-10k is publicly available at https://github.com/AlexTheBad/AP10K.
Thoracic diseases are very serious health problems that plague a large number of people. Chest X-ray is currently one of the most popular methods to diagnose thoracic diseases, playing an important role in the healthcare workflow. However, reading the chest X-ray images and giving an accurate diagnosis remain challenging tasks for expert radiologists. With the success of deep learning in computer vision, a growing number of deep neural network architectures were applied to chest X-ray image classification. However, most of the previous deep neural network classifiers were based on deterministic architectures which are usually very noise-sensitive and are likely to aggravate the overfitting issue. In this paper, to make a deep architecture more robust to noise and to reduce overfitting, we propose using deep generative classifiers to automatically diagnose thorax diseases from the chest X-ray images. Unlike the traditional deterministic classifier, a deep generative classifier has a distribution middle layer in the deep neural network. A sampling layer then draws a random sample from the distribution layer and input it to the following layer for classification. The classifier is generative because the class label is generated from samples of a related distribution. Through training the model with a certain amount of randomness, the deep generative classifiers are expected to be robust to noise and can reduce overfitting and then achieve good performances. We implemented our deep generative classifiers based on a number of well-known deterministic neural network architectures, and tested our models on the chest X-ray14 dataset. The results demonstrated the superiority of deep generative classifiers compared with the corresponding deep deterministic classifiers.
Many defenses have emerged with the development of adversarial attacks. Models must be objectively evaluated accordingly. This paper systematically tackles this concern by proposing a new parameter-free benchmark we coin RoBIC. RoBIC fairly evaluates the robustness of image classifiers using a new half-distortion measure. It gauges the robustness of the network against white and black box attacks, independently of its accuracy. RoBIC is faster than the other available benchmarks. We present the significant differences in the robustness of 16 recent models as assessed by RoBIC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا