Do you want to publish a course? Click here

Test of Lorentz Violation with Astrophysical Neutrino Flavor in IceCube

59   0   0.0 ( 0 )
 Added by Teppei Katori Dr.
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Astrophysical high-energy neutrinos observed by IceCube are sensitive to small effects in a vacuum such as those motivated from quantum gravity theories. Here, we discuss the potential sensitivity of Lorentz violation from the diffuse astrophysical neutrino data in IceCube. The estimated sensitivity reaches the Planck scale physics motivated region, providing IceCube with real discovery potential of Lorentz violation.



rate research

Read More

The high-energy astrophysical neutrinos recently discovered by IceCube opened a new way to test Lorentz and CPT violation through the astrophysical neutrino mixing properties. The flavor ratio of astrophysical neutrinos is a very powerful tool to investigate tiny effects caused by Lorentz and CPT violation. There are 3 main findings; (1) current limits on Lorentz and CPT violation in neutrino sector are not tight and they allow for any flavor ratios, (2) however, the observable flavor ratio on the Earth is tied with the flavor ratio at production, this means we can test both the presence of new physics and the astrophysical neutrino production mechanism simultaneously, and (3) the astrophysical neutrino flavor ratio is one of the most stringent tests of Lorentz and CPT violation.
The sidereal time dependence of MiniBooNE electron neutrino and anti-electron neutrino appearance data are analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov-Smirnov test shows both the electron neutrino and anti-electron neutrino appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the electron neutrino appearance data prefer a sidereal time-independent solution, and the anti-electron neutrino appearance data slightly prefer a sidereal time-dependent solution. Limits of order 10E-20 GeV are placed on combinations of SME coefficients. These limits give the best limits on certain SME coefficients for muon neutrino to electron neutrino and anti-muon neutrino to anti-electron neutrino oscillations. The fit values and limits of combinations of SME coefficients are provided.
164 - F. Rossi-Torres 2013
In this article we show the modification in the number of neutrino events ($ u_mu+bar u_mu$) caused by Lorentz Invariant Violation (LIV), $sigma=5times 10^{-24}$ and $10^{-23}$, in neutrino oscillation for a neutrino factory at a distance of 7500 km. The momentum of the muons can vary from 10-50 GeV and we consider $2times 10^{20}$ decays per year. The modifications in the number of events caused by this $sigma$ LIV parameter could be a strong signal of new physics in a future neutrino factory.
Motivated by the discovery of the first high-energy astrophysical neutrino source, the blazar TXS 0506+056, we revisit the IceCube flavor ratio analysis. Assuming large statistics from identified blazars, collected in the forthcoming years by the IceCube detector and its successor IceCube-Gen2, we demonstrate that the constraints on several new physics scenarios in which the baseline dependent terms in neutrino oscillation probabilities are not averaged, can be improved. As a representative case, we consider pseudo-Dirac neutrinos while neutrino decay is also discussed.
The recent high-statistics high-energy atmospheric neutrino data collected by IceCube open a new window to probe new physics scenarios that are suppressed in lower energy neutrino experiments. In this paper we analyze the IceCube atmospheric neutrino data to constrain the Violation of Equivalence Principle (VEP) in the framework of three neutrinos with non-universal gravitational couplings. In this scenario the effect of VEP on neutrino oscillation probabilities can be parametrized by two parameters $Delta gamma_{21}equiv gamma_2-gamma_1$ and $Deltagamma_{31}equiv gamma_3-gamma_1$, where $gamma_i$s denote the coupling of neutrino mass eigenstates to gravitational field. By analyzing the latest muon-tracks data sets of IceCube-40 and IceCube-79, besides providing the 2D allowed regions in $(phiDeltagamma_{21},phiDeltagamma_{31})$ plane, we obtain the upper limits $|phiDeltagamma_{21}| < 9.1times 10^{-27}$ (at 90% C.L.) which improves the previous limit by $sim4$ orders of magnitude and $|phiDeltagamma_{31}| lesssim 6times 10^{-27}$ (at 90% C.L.) which improves the current limit by $sim1$ order of magnitude. Also we discuss in detail and analytically the effect of VEP on neutrino oscillation probabilities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا