Multidimensional Dominance Drawings


Abstract in English

Let $G$ be a DAG with $n$ vertices and $m$ edges. Two vertices $u,v$ are incomparable if $u$ doesnt reach $v$ and vice versa. We denote by emph{width} of a DAG $G$, $w_G$, the maximum size of a set of incomparable vertices of $G$. In this paper we present an algorithm that computes a dominance drawing of a DAG G in $k$ dimensions, where $w_G le k le frac{n}{2}$. The time required by the algorithm is $O(kn)$, with a precomputation time of $O(km)$, needed to compute a emph{compressed transitive closure} of $G$, and extra $O(n^2w_G)$ or $O(n^3)$ time, if we want $k=w_G$. Our algorithm gives a tighter bound to the dominance dimension of a DAG. As corollaries, a new family of graphs having a 2-dimensional dominance drawing and a new upper bound to the dimension of a partial order are obtained. We also introduce the concept of transitive module and dimensional neck, $w_N$, of a DAG $G$ and we show how to improve the results given previously using these concepts.

Download