Recent developments surrounding resource theories have shown that any quantum state or measurement resource, with respect to a convex (and compact) set of resourceless objects, provides an advantage in a tailored subchannel or state discrimination task, respectively. Here we show that an analogous, more general result is also true in the case of dynamical quantum resources, i.e., channels and instruments. In the scenario we consider, the tasks associated to a resource are input-output games. The advantage a resource provides in these games is naturally quantified by a generalized robustness measure. We illustrate our approach by applying it to a broad collection of examples, including classical and measure-and-prepare channels, measurement and channel incompatibility, LOCC operations, and steering, as well as discussing its applicability to other resources in, e.g., quantum thermodynamics. We finish by showing that our approach generalizes to higher-order dynamics where it can be used, for example, to witness causal properties of supermaps.