Do you want to publish a course? Click here

CWISEP J193518.59$-$154620.3: An Extremely Cold Brown Dwarf in the Solar Neighborhood Discovered with CatWISE

173   0   0.0 ( 0 )
 Added by Federico Marocco
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the discovery of an extremely cold, nearby brown dwarf in the solar neighborhood, found in the CatWISE catalog (Eisenhardt et al., in prep.). Photometric follow-up with Spitzer reveals that the object, CWISEP J193518.59-154620.3, has ch1$-$ch2 = 3.24$,pm,$0.31 mag, making it one of the reddest brown dwarfs known. Using the Spitzer photometry and the polynomial relations from Kirkpatrick et al. (2019) we estimate an effective temperature in the $sim$270--360 K range, and a distance estimate in the 5.6$-$10.9 pc range. We combined the WISE, NEOWISE, and Spitzer data to measure a proper motion of $mu_alpha cos delta = 337pm69$ mas yr$^{-1}$, $mu_delta = -50pm97$ mas yr$^{-1}$, which implies a relatively low tangential velocity in the range 7$-$22 km s$^{-1}$.



rate research

Read More

We present Spitzer 3.6$mu$m and 4.5$mu$m follow-up of 170 candidate extremely cool brown dwarfs newly discovered via the combination of WISE and NEOWISE imaging at 3$-$5$mu$m. CatWISE, a joint analysis of archival WISE and NEOWISE data, has improved upon the motion measurements of AllWISE by leveraging a $>$10$times$ time baseline enhancement, from 0.5 years (AllWISE) to 6.5 years (CatWISE). As a result, CatWISE motion selection has yielded a large sample of previously unrecognized brown dwarf candidates, many of which have archival detections exclusively in the WISE 4.6$mu$m (W2) channel, suggesting that they could be both exceptionally cold and nearby. Where these objects go undetected in WISE W1 (3.4$mu$m), Spitzer can provide critically informative detections at 3.6$mu$m. Of our motion-confirmed discoveries, seventeen have a best-fit Spitzer [3.6]$-$[4.5] color most consistent with spectral type Y. CWISEP J144606.62$-$231717.8 ($mu approx 1.3$/yr) is likely the reddest, and therefore potentially coldest, member of our sample with a very uncertain [3.6]$-$[4.5] color of 3.71 $pm$ 0.44 magnitudes. We also highlight our highest proper motion discovery, WISEA J153429.75$-$104303.3, with $mu approx 2.7$/yr. Given that the prior list of confirmed and presumed Y dwarfs consists of just 27 objects, the Spitzer follow-up presented in this work has substantially expanded the sample of identified Y dwarfs. Our new discoveries thus represent significant progress toward understanding the bottom of the substellar mass function, investigating the diversity of the Y dwarf population, and selecting optimal brown dwarf targets for JWST spectroscopy.
We present follow-up $Spitzer$ observations at 3.6$mu$m (ch1) and 4.5$mu$m (ch2) of CWISEP J144606.62$-$231717.8, one of the coldest known brown dwarfs in the solar neighborhood. This object was found by mining the Wide-field Infrared Survey Explorer ($WISE$) and $NEOWISE$ data via the CatWISE Preliminary Catalog by Meisner et al. (2019b), where an initial $Spitzer$ color of ch1$-$ch2 = 3.71$pm$0.44 mag was reported, implying it could be one of the reddest, and hence coldest, known brown dwarfs. Additional $Spitzer$ data presented here allows us to revise its color to ch1$-$ch2 = 2.986$pm$0.048 mag, which makes CWISEP J144606.62$-$231717.8 the 5th reddest brown dwarf ever observed. A preliminary trigonometric parallax measurement, based on a combination of $WISE$ and $Spitzer$ astrometry, places this object at a distance of 10.1$^{+1.7}_{-1.3}$ pc. Based on our improved $Spitzer$ color and preliminary parallax, CWISEP J144606.62$-$231717.8 has a $T_{rm eff}$ in the 310$-$360 K range. Assuming an age of 0.5$-$13 Gyr, this corresponds to a mass between 2 and 20 $M_{rm Jup}$.
The study of the stellar formation history in the solar neighborhood is a powerful technique to recover information about the early stages and evolution of the Milky Way. We present a new method which consists of directly probing the formation history from the nearby stellar remnants. We rely on the volume complete sample of white dwarfs within 20 pc, where accurate cooling ages and masses have been determined. The well characterized initial-final mass relation is employed in order to recover the initial masses (1 < M/Msun < 8) and total ages for the local degenerate sample. We correct for moderate biases that are necessary to transform our results to a global stellar formation rate, which can be compared to similar studies based on the properties of main-sequence stars in the solar neighborhood. Our method provides precise formation rates for all ages except in very recent times, and the results suggest an enhanced formation rate for the solar neighborhood in the last 5 Gyr compared to the range 5 < Age (Gyr) < 10. Furthermore, the observed total age of ~10 Gyr for the oldest white dwarfs in the local sample is consistent with the early seminal studies that have determined the age of the Galactic disk from stellar remnants. The main shortcoming of our study is the small size of the local white dwarf sample. However, the presented technique can be applied to larger samples in the future.
Recent wide-field near-infrared surveys have uncovered a large number of cool brown dwarfs, extending the temperature sequence down to less than 500 K and constraining the faint end of the luminosity function. One interesting implication of the derived luminosity function is that the brown dwarf census in the immediate (<10 pc) solar neighborhood is still largely incomplete, and some bright (J<16) brown dwarfs remain to be identified in existing surveys. These objects are especially interesting as they are the ones that can be studied in most detail, especially with techniques that require large fluxes (e.g. time-variability, polarimetry, high-resolution spectroscopy) that cannot realistically be applied to objects uncovered by deep surveys. By cross-matching the DENIS and the 2MASS point-source catalogs, we have identified an overlooked brown dwarf -DENIS J081730.0-615520- that is the brightest field mid-T dwarf in the sky (J = 13.6). We present astrometry and spectroscopy follow-up observations of this brown dwarf. Our data indicate a spectral type T6 and a distance -from parallax measurement- of 4.9pm0.3 pc, placing this mid-T dwarf among the 3 closest isolated brown dwarfs to the Sun.
We present Spitzer follow-up imaging of 95 candidate extremely cold brown dwarfs discovered by the Backyard Worlds: Planet 9 citizen science project, which uses visually perceived motion in multi-epoch WISE images to identify previously unrecognized substellar neighbors to the Sun. We measure Spitzer [3.6]-[4.5] color to phototype our brown dwarf candidates, with an emphasis on pinpointing the coldest and closest Y dwarfs within our sample. The combination of WISE and Spitzer astrometry provides quantitative confirmation of the transverse motion of 75 of our discoveries. Nine of our motion-confirmed objects have best-fit linear motions larger than 1/yr; our fastest-moving discovery is WISEA J155349.96+693355.2 (total motion ~2.15/yr), a possible T type subdwarf. We also report a newly discovered wide-separation (~400 AU) T8 comoving companion to the white dwarf LSPM J0055+5948 (the fourth such system to be found), plus a candidate late T companion to the white dwarf LSR J0002+6357 at 5.5 projected separation (~8,700 AU if associated). Among our motion-confirmed targets, five have Spitzer colors most consistent with spectral type Y. Four of these five have exceptionally red Spitzer colors suggesting types of Y1 or later, adding considerably to the small sample of known objects in this especially valuable low-temperature regime. Our Y dwarf candidates begin bridging the gap between the bulk of the Y dwarf population and the coldest known brown dwarf.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا