No Arabic abstract
Large-scale labeled datasets are the indispensable fuel that ignites the AI revolution as we see today. Most such datasets are constructed using crowdsourcing services such as Amazon Mechanical Turk which provides noisy labels from non-experts at a fair price. The sheer size of such datasets mandates that it is only feasible to collect a few labels per data point. We formulate the problem of test-time label aggregation as a statistical estimation problem of inferring the expected voting score in an ideal world where all workers label all items. By imitating workers with supervised learners and using them in a doubly robust estimation framework, we prove that the variance of estimation can be substantially reduced, even if the learner is a poor approximation. Synthetic and real-world experiments show that by combining the doubly robust approach with adaptive worker/item selection, we often need as low as 0.1 labels per data point to achieve nearly the same accuracy as in the ideal world where all workers label all data points.
Allowing members of the crowd to propose novel microtasks for one another is an effective way to combine the efficiencies of traditional microtask work with the inventiveness and hypothesis generation potential of human workers. However, microtask proposal leads to a growing set of tasks that may overwhelm limited crowdsourcer resources. Crowdsourcers can employ methods to utilize their resources efficiently, but algorithmic approaches to efficient crowdsourcing generally require a fixed task set of known size. In this paper, we introduce *cost forecasting* as a means for a crowdsourcer to use efficient crowdsourcing algorithms with a growing set of microtasks. Cost forecasting allows the crowdsourcer to decide between eliciting new tasks from the crowd or receiving responses to existing tasks based on whether or not new tasks will cost less to complete than existing tasks, efficiently balancing resources as crowdsourcing occurs. Experiments with real and synthetic crowdsourcing data show that cost forecasting leads to improved accuracy. Accuracy and efficiency gains for crowd-generated microtasks hold the promise to further leverage the creativity and wisdom of the crowd, with applications such as generating more informative and diverse training data for machine learning applications and improving the performance of user-generated content and question-answering platforms.
We present a novel method for obtaining high-quality, domain-targeted multiple choice questions from crowd workers. Generating these questions can be difficult without trading away originality, relevance or diversity in the answer options. Our method addresses these problems by leveraging a large corpus of domain-specific text and a small set of existing questions. It produces model suggestions for document selection and answer distractor choice which aid the human question generation process. With this method we have assembled SciQ, a dataset of 13.7K multiple choice science exam questions (Dataset available at http://allenai.org/data.html). We demonstrate that the method produces in-domain questions by providing an analysis of this new dataset and by showing that humans cannot distinguish the crowdsourced questions from original questions. When using SciQ as additional training data to existing questions, we observe accuracy improvements on real science exams.
While model selection is a well-studied topic in parametric and nonparametric regression or density estimation, selection of possibly high-dimensional nuisance parameters in semiparametric problems is far less developed. In this paper, we propose a selective machine learning framework for making inferences about a finite-dimensional functional defined on a semiparametric model, when the latter admits a doubly robust estimating function and several candidate machine learning algorithms are available for estimating the nuisance parameters. We introduce two new selection criteria for bias reduction in estimating the functional of interest, each based on a novel definition of pseudo-risk for the functional that embodies the double robustness property and thus is used to select the pair of learners that is nearest to fulfilling this property. We establish an oracle property for a multi-fold cross-validation version of the new selection criteria which states that our empirical criteria perform nearly as well as an oracle with a priori knowledge of the pseudo-risk for each pair of candidate learners. We also describe a smooth approximation to the selection criteria which allows for valid post-selection inference. Finally, we apply the approach to model selection of a semiparametric estimator of average treatment effect given an ensemble of candidate machine learners to account for confounding in an observational study.
Modern machine learning is migrating to the era of complex models, which requires a plethora of well-annotated data. While crowdsourcing is a promising tool to achieve this goal, existing crowdsourcing approaches barely acquire a sufficient amount of high-quality labels. In this paper, motivated by the Guess-with-Hints answer strategy from the Millionaire game show, we introduce the hint-guided approach into crowdsourcing to deal with this challenge. Our approach encourages workers to get help from hints when they are unsure of questions. Specifically, we propose a hybrid-stage setting, consisting of the main stage and the hint stage. When workers face any uncertain question on the main stage, they are allowed to enter the hint stage and look up hints before making any answer. A unique payment mechanism that meets two important design principles for crowdsourcing is developed. Besides, the proposed mechanism further encourages high-quality workers less using hints, which helps identify and assigns larger possible payment to them. Experiments are performed on Amazon Mechanical Turk, which show that our approach ensures a sufficient number of high-quality labels with low expenditure and detects high-quality workers.
The main goal of this paper is to discuss how to integrate the possibilities of crowdsourcing platforms with systems supporting workflow to enable the engagement and interaction with business tasks of a wider group of people. Thus, this work is an attempt to expand the functional capabilities of typical business systems by allowing selected process tasks to be performed by unlimited human resources. Opening business tasks to crowdsourcing, within established Business Process Management Systems (BPMS) will improve the flexibility of company processes and allow for lower work-load and greater specialization among the staff employed on-site. The presented conceptual work is based on the current international standards in this field, promoted by Workflows Management Coalition. To this end, the functioning of business platforms was analysed and their functionality was presented visually, followed by a proposal and a discussion of how to implement crowdsourcing into workflow systems.