Do you want to publish a course? Click here

The influence of the void environment on the ratio of dark matter halo mass to stellar mass in SDSS MaNGA galaxies

100   0   0.0 ( 0 )
 Added by Kelly Douglass
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study how the void environment affects the formation and evolution of galaxies in the universe by comparing the ratio of dark matter halo mass to stellar mass of galaxies in voids with galaxies in denser regions. Using spectroscopic observations from the SDSS MaNGA DR15, we estimate the dark matter halo mass of 642 void galaxies and 938 galaxies in denser regions. We use the relative velocities of the H-alpha emission line across the galaxys surface to measure the rotation curve of each galaxy because the kinematics of the interstellar medium is smoother than the stellar kinematics. We find that neither the stellar-to-halo-mass relation nor the relationship between the gas-phase metallicity and the ratio of dark matter halo mass to stellar mass is affected by the void environment. We also observe no difference in the distribution of the ratio of dark matter halo mass to stellar mass between void galaxies and galaxies in denser regions, implying that the shape of the dark matter halo profile is independent of a galaxys environment.



rate research

Read More

A large variance exists in the amplitude of the Stellar Mass - Halo Mass (SMHM) relation for group and cluster-size halos. Using a sample of 254 clusters, we show that the magnitude gap between the brightest central galaxy (BCG) and its second or fourth brightest neighbor accounts for a significant portion of this variance. We find that at fixed halo mass, galaxy clusters with a higher magnitude gap have a higher BCG stellar mass. This relationship is also observed in semi-analytic representations of low-redshift galaxy clusters in simulations. This SMHM-magnitude gap stratification likely results from BCG growth via hierarchical mergers and may link assembly of the halo with the growth of the BCG. Using a Bayesian model, we quantify the importance of the magnitude gap in the SMHM relation using a multiplicative stretch factor, which we find to be significantly non-zero. The inclusion of the magnitude gap in the SMHM relation results in a large reduction in the inferred intrinsic scatter in the BCG stellar mass at fixed halo mass. We discuss the ramifications of this result in the context of galaxy formation models of centrals in group and cluster-sized halos.
We study how the void environment affects galactic chemical evolution by comparing the oxygen and nitrogen abundances of dwarf galaxies in voids with dwarf galaxies in denser regions. Using spectroscopic observations from SDSS DR7, we estimate oxygen, nitrogen, and neon abundances of 889 void dwarf galaxies and 672 dwarf galaxies in denser regions. A substitute for the [OII] 3727 doublet is developed, permitting oxygen abundance estimates of SDSS dwarf galaxies at all redshifts with the Direct Te method. We find that void dwarf galaxies have about the same oxygen abundance and Ne/O ratio, slightly higher neon abundances, and slightly lower nitrogen abundance and N/O ratio than dwarf galaxies in denser environments. We conclude that the void environment has a slight influence on dwarf galaxy chemical evolution. Our mass-N/O relationship shows that the secondary production of nitrogen commences at a lower stellar mass in void dwarf galaxies than in dwarf galaxies in denser environments. Our dwarf galaxy sample demonstrates a strong anti-correlation between the sSFR and N/O ratio, providing evidence that oxygen is produced in higher mass stars than those which synthesize nitrogen. The lower N/O ratios and smaller stellar mass for secondary nitrogen production seen in void dwarf galaxies may indicate both delayed star formation and a dependence of cosmic downsizing on the large-scale environment. A shift toward slightly higher oxygen abundances in void dwarf galaxies could be evidence of larger ratios of dark matter halo mass to stellar mass in voids than in denser regions.
By means of the fossil record method implemented through Pipe3D, we reconstruct the global and radial stellar mass growth histories (MGHs) of an unprecedentedly large sample of galaxies, ranging from dwarf to giant objects, from the Mapping Nearby Galaxies at the Apache Point Observatory survey. We confirm that the main driver of the global MGHs is mass, with more massive galaxies assembling their masses earlier (downsizing), though for a given mass, the global MGHs segregate by color, specific star formation rate (sSFR), and morphological type. From the inferred radial mean MGHs, we find that at the late evolutionary stages (or for fractions of assembled mass larger than ~ 80%), the innermost regions formed stars on average earlier than the outermost ones (inside-out). At earlier epochs, when the age resolution of the method becomes poor, the mass assembly seems to be spatially homogeneous or even in the outside-in mode, specially for the red/quiescent/early-type galaxies. The innermost MGHs are in general more regular (less scatter around the mean) than the outermost ones. For dwarf and low-mass galaxies, we do not find evidence of an outside-in formation mode; instead their radial MGHs are very diverse most of the time, with periods of outside- in and inside-out modes (or strong radial migration), suggesting this an episodic SF history. Blue/star-forming/late-type galaxies present on average a significantly more pronounced inside-out formation mode than red/quiescent/early-type galaxies, independently of mass. We discuss our results in the light of the processes of galaxy formation, quenching, and radial migration. We discuss also on the uncertainties and biases of the fossil record method and how they could affect our results.
In this paper we investigate whether the stellar initial mass function of early-type galaxies depends on their host environment. To this purpose, we have selected a sample of early-type galaxies from the SPIDER catalogue, characterized their environment through the group catalogue of Wang et al. and used their optical SDSS spectra to constrain the IMF slope, through the analysis of IMF-sensitive spectral indices. To reach a high enough signal-to-noise ratio, we have stacked spectra in velocity dispersion ($sigma_0$) bins, on top of separating the sample by galaxy hierarchy and host halo mass, as proxies for galaxy environment. In order to constrain the IMF, we have compared observed line strengths to predictions of MIUSCAT/EMILES synthetic stellar population models, with varying age, metallicity, and bimodal (low-mass tapered) IMF slope ($rm Gamma_b$). Consistent with previous studies, we find that $rm Gamma_b$ increases with $sigma_0$, becoming bottom-heavy (i.e. an excess of low-mass stars with respect to the Milky-Way-like IMF) at high $sigma_0$. We find that this result is robust against the set of isochrones used in the stellar population models, as well as the way the effect of elemental abundance ratios is taken into account. We thus conclude that it is possible to use currently state-of-the-art stellar population models and intermediate resolution spectra to consistently probe IMF variations. For the first time, we show that there is no dependence of $Gamma_b$ on environment or galaxy hierarchy, as measured within the $3$ SDSS fibre, thus leaving the IMF as an intrinsic galaxy property, possibly set already at high redshift.
At a fixed halo mass, galaxy clusters with higher magnitude gaps have larger brightest central galaxy (BCG) stellar masses. Recent studies have shown that by including the magnitude gap ($rm m_{gap}$) as a latent parameter in the stellar mass - halo mass (SMHM) relation, we can make more precise measurements on the amplitude, slope, and intrinsic scatter. Using galaxy clusters from the Sloan Digital Sky Survey, we measure the SMHM-$rm m_{gap}$ relation and its evolution out to $z=0.3$. Using a fixed comoving aperture of 100kpc to define the central galaxys stellar mass, we report statistically significant negative evolution in the slope of the SMHM relation to $z = 0.3$ ($> 3.5sigma$). The steepening of the slope over the last 3.5 Gyrs can be explained by late-time merger activity at the cores of galaxy clusters. We also find that the inferred slope depends on the aperture used to define the radial extent of the central galaxy. At small radii (20kpc), the slope of the SMHM relation is shallow, indicating that the core of the central galaxy is less related to the growth of the underlying host halo. By including all of the central galaxys light within 100kpc, the slope reaches an asymptote at a value consistent with recent high resolution hydrodynamical cosmology simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا