Do you want to publish a course? Click here

Enhanced Ehlers Transformation and the Majumdar-Papapetrou-NUT Spacetime

104   0   0.0 ( 0 )
 Added by Marco Astorino
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

The transformation which adds (or removes) NUT charge when it is applied to electrovacuum, axisymmetric and stationary space-times is studied. After analysing the Ehlers and the Reina-Treves transformations we propose a new one, more precise in the presence of the Maxwell electromagnetic field. The enhanced Ehlers transformation proposed turns out to act as a gravitomagnetic duality, analogously to the electromagnetic duality, but for gravity: it rotates the mass charge into the gravomagnetic (or NUT) charge. As an example the Kerr-Newman-NUT black hole is obtained with the help of this enhanced transformation. Moreover a new analytical exact solution is built adding the NUT charge to a double charged black hole, at equilibrium. It describes the non-extremal generalisation of the Majumdar-Papapetrou-NUT solution. From the near-horizon analysis, its microscopic entropy, according to the Kerr/CFT correspondence, is found and the second law of black hole thermodynamics is discussed.



rate research

Read More

We investigate the positions of stable circular massive particle orbits in the Majumdar--Papapetrou dihole spacetime with equal mass. In terms of qualitative differences of their sequences, we classify the dihole separation into five ranges and find four critical values as the boundaries. When the separation is relatively large, the sequence on the symmetric plane bifurcates, and furthermore, they extend to each innermost stable circular orbit in the vicinity of each black hole. In a certain separation range, the sequence on the symmetric plane separates into two parts. On the basis of this phenomenon, we discuss the formation of double accretion disks with a common center. Finally, we clarify the dependence of the radii of marginally stable circular orbits and innermost stable circular orbits on the separation parameter. We find a discontinuous transition of the innermost stable circular orbit radius. We also find the separation range at which the radius of the innermost stable circular orbit can be smaller than that of the stable circular photon orbit.
The stationary axisymmetric spacetime coupled to nonlinear Born-Infeld electrodynamics is studied. The solution was derived by Plebanski et al (1984) and it is characterized by six free parameters: mass, NUT charge, electric and magnetic charge, Born-Infeld parameter and cosmological constant. The geodesic and Lorentz force equations are integrated, and a qualitative analysis of the effect of varying the parameters in the effective potential is provided. Then the light and charged particle trajectories are discussed. The conditions that determine an extreme black hole are presented as well.
The general extreme limit of the double-Reissner-Nordstrom solution is worked out in explicit analytical form involving prolate spheroidal coordinates. We name it the combined Majumdar-Papapetrou-Bonnor field to underline the fact that it contains as particular cases the two-body specialization of the well-known Majumdar-Papapetrou solution and Bonnors three-parameter electrostatic field. To the latter we give a precise physical interpretation as describing a pair of non-rotating extremal black holes with unequal masses and unequal opposite charges kept apart by a strut, the absolute values of charges exceeding the respective (positive) values of masses.
147 - Jiri Podolsky , Adam Vratny 2020
We present and analyze a class of exact spacetimes which describe accelerating black holes with a NUT parameter. First, we verify that the intricate metric found by Chng, Mann and Stelea in 2006 indeed solves Einsteins vacuum field equations of General Relativity. We explicitly calculate all components of the Weyl tensor and determine its algebraic structure. As it turns out, it is actually of algebraically general type I with four distinct principal null directions. It explains why this class of solutions has not been (and could not be) found within the large Plebanski-Demianski family of type D spacetimes. Then we transform the solution into a much more convenient metric form which explicitly depends on three physical parameters: mass, acceleration, and the NUT parameter. These parameters can independently be set to zero, recovering thus the well-known spacetimes in standard coordinates, namely the C-metric, the Taub-NUT metric, the Schwarzschild metric, and flat Minkowski space. Using this new metric, we investigate physical and geometrical properties of such accelerating NUT black holes. In particular, we localize and study four Killing horizons (two black-hole plus two acceleration) and investigate the curvature. Employing the scalar invariants we prove that there are no curvature singularities whenever the NUT parameter is nonzero. We identify asymptotically flat regions and relate them to conformal infinities. This leads to a complete understanding of the global structure. The boost-rotation metric form reveals that there is actually a pair of such black holes. They uniformly accelerate in opposite directions due to the action of rotating cosmic strings or struts located along the corresponding two axes. Rotation of these sources is directly related to the NUT parameter. In their vicinity there are pathological regions with closed timelike curves.
Different forms of the metric for the Kerr-NUT-(anti-)de Sitter space-time are being widely used in its extension to higher dimensions. The purpose of this note is to relate the parameters that are being used to the physical parameters (mass, rotation, NUT and cosmological constant) in the basic four dimensional situation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا