No Arabic abstract
We investigate supercurrent interference patterns measured as a function of magnetic field in ballistic graphene Josephson junctions. At high doping, the expected $Phi_{0}$-periodic Fraunhofer pattern is observed, indicating a uniform current distribution. Close to the Dirac point, we find anomalous interference patterns with an apparent 2$Phi_{0}$ periodicity, similar to that predicted for topological Andreev bound states carrying a charge of $e$ instead of $2e$. This feature persists with increasing temperature, ruling out a non-sinusoidal current-phase relationship. It also persists in junctions in which sharp vacuum edges are eliminated. Our results indicate that the observed behavior may originate from an intrinsic property of ballistic graphene Josephson junctions, though the exact mechanism remains unclear.
Hybrid graphene-superconductor devices have attracted much attention since the early days of graphene research. So far, these studies have been limited to the case of diffusive transport through graphene with poorly defined and modest quality graphene-superconductor interfaces, usually combined with small critical magnetic fields of the superconducting electrodes. Here we report graphene based Josephson junctions with one-dimensional edge contacts of Molybdenum Rhenium. The contacts exhibit a well defined, transparent interface to the graphene, have a critical magnetic field of 8 Tesla at 4 Kelvin and the graphene has a high quality due to its encapsulation in hexagonal boron nitride. This allows us to study and exploit graphene Josephson junctions in a new regime, characterized by ballistic transport. We find that the critical current oscillates with the carrier density due to phase coherent interference of the electrons and holes that carry the supercurrent caused by the formation of a Fabry-P{e}rot cavity. Furthermore, relatively large supercurrents are observed over unprecedented long distances of up to 1.5 $mu$m. Finally, in the quantum Hall regime we observe broken symmetry states while the contacts remain superconducting. These achievements open up new avenues to exploit the Dirac nature of graphene in interaction with the superconducting state.
The magneto-electrostatic tailoring of the supercurrent in quantum point contact ballistic Josephson junctions is demonstrated. An etched InAs-based heterostructure is laterally contacted to superconducting niobium leads and the existence of two etched side gates permits, in combination with the application of a perpendicular magnetic field, to modify continuously the magnetic interference pattern by depleting the weak link. For wider junctions the supercurrent presents a Fraunhofer-like interference pattern with periodicity h/2e whereas by shrinking electrostatically the weak link, the periodicity evolves continuously to a monotonic decay. These devices represent novel tunable structures that might lead to the study of the elusive Majorana fermions.
The current-phase relation (CPR) of a Josephson junction (JJ) determines how the supercurrent evolves with the superconducting phase difference across the junction. Knowledge of the CPR is essential in order to understand the response of a JJ to various external parameters. Despite the rising interest in ultra-clean encapsulated graphene JJs, the CPR of such junctions remains unknown. Here, we use a fully gate-tunable graphene superconducting quantum intereference device (SQUID) to determine the CPR of ballistic graphene JJs. Each of the two JJs in the SQUID is made with graphene encapsulated in hexagonal boron nitride. By independently controlling the critical current of the JJs, we can operate the SQUID either in a symmetric or asymmetric configuration. The highly asymmetric SQUID allows us to phase-bias one of the JJs and thereby directly obtain its CPR. The CPR is found to be skewed, deviating significantly from a sinusoidal form. The skewness can be tuned with the gate voltage and oscillates in anti-phase with Fabry-P{e}rot resistance oscillations of the ballistic graphene cavity. We compare our experiments with tight-binding calculations which include realistic graphene-superconductor interfaces and find a good qualitative agreement.
Short ballistic graphene Josephson junctions sustain superconducting current with a non-sinusoidal current-phase relation up to a critical current threshold. The current-phase relation, arising from proximitized superconductivity, is gate-voltage tunable and exhibits peculiar skewness observed in high quality graphene superconductors heterostructures with clean interfaces. These properties make graphene Josephson junctions promising sensitive quantum probes of microscopic fluctuations underlying transport in two-dimensions. We show that the power spectrum of the critical current fluctuations has a characteristic $1/f$ dependence on frequency, $f$, probing two points and higher correlations of carrier density fluctuations of the graphene channel induced by carrier traps in the nearby substrate. Tunability with the Fermi level, close to and far from the charge neutrality point, and temperature dependence of the noise amplitude are clear fingerprints of the underlying material-inherent processes. Our results suggest a roadmap for the analysis of decoherence sources in the implementation of coherent devices by hybrid nanostructures.
One of the consequences of Cooper pairs having a finite momentum in the interlayer of a Josephson junction, is $pi$-junction behavior. The finite momentum can either be due to an exchange field in ferromagnetic Josephson junctions, or due to the Zeeman effect. Here, we report the observation of Zeeman effect induced 0-$pi$ transitions in Bi$_{1-x}$Sb$_x$, 3D Dirac semimetal-based Josephson junctions. The large g-factor of the Zeeman effect from a magnetic field applied in the plane of the junction allows tuning of the Josephson junctions from 0- to $pi$- regimes. This is revealed by sign changes in the modulation of the critical current by applied magnetic field of an asymmetric superconducting quantum interference device (SQUID). Additionally, we directly measure a non-sinusoidal current-phase relation in the asymmetric SQUID, consistent with models for ballistic Josephson transport.