Do you want to publish a course? Click here

Accurate ground state- and quasiparticle energies: beyond the RPA and GW methods with adiabatic exchange-correlation kernels

142   0   0.0 ( 0 )
 Added by Thomas Olsen
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review the theory and application of adiabatic exchange-correlation (xc-) kernels for ab initio calculations of ground state energies and quasiparticle excitations within the frameworks of the adiabatic connection fluctuation dissipation theorem and Hedins equations, respectively. Various different xc-kernels, which are all rooted in the homogeneous electron gas, are introduced but hereafter we focus on the specific class of renormalized adiabatic kernels, in particular the rALDA and rAPBE. The kernels drastically improve the description of short-range correlations as compared to the random phase approximation (RPA), resulting in significantly better correlation energies. This effect greatly reduces the reliance on error cancellations, which is essential in RPA, and systematically improves covalent bond energies while preserving the good performance of the RPA for dispersive interactions. For quasiparticle energies, the xc-kernels account for vertex corrections that are missing in the GW self-energy. In this context, we show that the short-range correlations mainly correct the absolute band positions while the band gap is less affected in agreement with the known good performance of GW for the latter. The renormalized xc-kernels offer a rigorous extension of the RPA and GW methods with clear improvements in terms of accuracy at little extra computational cost.



rate research

Read More

Electronic correlation energies from the random-phase approximation converge slowly with respect to the plane wave basis set size. We study the conditions, under which a short-range local density functional can be used to account for the basis set incompleteness error. Furthermore, we propose a one-shot extrapolation scheme based on the Lindhard response function of the homogeneous electron gas. The different basis set correction methods are used to calculate equilibrium lattice constants for prototypical solids of different bonding types.
We present quasiparticle (QP) energies from fully self-consistent $GW$ (sc$GW$) calculations for a set of prototypical semiconductors and insulators within the framework of the projector-augmented wave methodology. To obtain converged results, both finite basis-set corrections and $k$-point corrections are included, and a simple procedure is suggested to deal with the singularity of the Coulomb kernel in the long-wavelength limit, the so called head correction. It is shown that the inclusion of the head corrections in the sc$GW$ calculations is critical to obtain accurate QP energies with a reasonable $k$-point set. We first validate our implementation by presenting detailed results for the selected case of diamond, and then we discuss the converged QP energies, in particular the band gaps, for a set of gapped compounds and compare them to single-shot $G_0W_0$, QP self-consistent $GW$, and previously available sc$GW$ results as well as experimental results.
We present a tight-binding based GW approach for the calculation of quasiparticle energy levels in confined systems such as molecules. Key quantities in the GW formalism like the microscopic dielectric function or the screened Coulomb interaction are expressed in a minimal basis of spherically averaged atomic orbitals. All necessary integrals are either precalculated or approximated without resorting to empirical data. The method is validated against first principles results for benzene and anthracene, where good agreement is found for levels close to the frontier orbitals. Further, the size dependence of the quasiparticle gap is studied for conformers of the polyacenes ($C_{4n+2}H_{2n+4}$) up to n = 30.
We present a method of extracting the exchange parameters of the classical Heisenberg model from first-principles calculations of spin-spiral total energies based on density functional theory. The exchange parameters of the transition-metal monoxides MnO and NiO are calculated and used to estimate magnetic properties such as transition temperatures and magnon energies. Furthermore we show how to relate the magnon energies directly to differences in spin-spiral total energies for systems containing an arbitrary number of magnetic sublattices. This provides a comparison between magnon energies using a finite number of exchange parameters and the infinite limit.
Density matrix quantum Monte Carlo (DMQMC) is used to sample exact-on-average $N$-body density matrices for uniform electron gas systems of up to 10$^{124}$ matrix elements via a stochastic solution of the Bloch equation. The results of these calculations resolve a current debate over the accuracy of the data used to parametrize finite-temperature density functionals. Exchange-correlation energies calculated using the real-space restricted path-integral formalism and the $k$-space configuration path-integral formalism disagree by up to $sim$$10$% at certain reduced temperatures $T/T_F le 0.5$ and densities $r_s le 1$. Our calculations confirm the accuracy of the configuration path-integral Monte Carlo results available at high density and bridge the gap to lower densities, providing trustworthy data in the regime typical of planetary interiors and solids subject to laser irradiation. We demonstrate that DMQMC can calculate free energies directly and present exact free energies for $T/T_F ge 1$ and $r_s le 2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا