No Arabic abstract
In an earlier paper (Wan et al. 2012), the authors showed that a similarity solution for anisotropic incompressible 3D magnetohydrodynamic (MHD) turbulence, in the presence of a uniform mean magnetic field $vB_0$, exists if the ratio of parallel to perpendicular (with respect to $vB_0$) similarity length scales remains constant in time. This conjecture appears to be a rather stringent constraint on the dynamics of decay of the energy-containing eddies in MHD turbulence. However, we show here, using direct numerical simulations, that this hypothesis is indeed satisfied in incompressible MHD turbulence. After an initial transient period, the ratio of parallel to perpendicular length scales fluctuates around a steady value during the decay of the eddies. We show further that a Taylor--Karman-like similarity decay holds for MHD turbulence in the presence of a mean magnetic field. The effect of different parameters, including Reynolds number, DC field strength, and cross-helicity, on the nature of similarity decay is discussed.
Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accurate dissipation rate. Using modern computers it is difficult to attain an inertial range of three decades with direct numerical simulations, whereas eight are possible using shell models. In this review we set up a general mathematical framework allowing the description of any MHD shell model. The variety of the latter, with their advantages and weaknesses, is introduced. Finally we consider a number of applications, dealing with free-decaying MHD turbulence, dynamo action, Alfven waves and the Hall effect.
A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsasser field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multi-exponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas.
In presence of an externally supported, mean magnetic field a turbulent, conducting medium, such as plasma, becomes anisotropic. This mean magnetic field, which is separate from the fluctuating, turbulent part of the magnetic field, has considerable effects on the dynamics of the system. In this paper, we examine the dissipation rates for decaying incompressible magnetohydrodynamic (MHD) turbulence with increasing Reynolds number, and in the presence of a mean magnetic field of varying strength. Proceeding numerically, we find that as the Reynolds number increases, the dissipation rate asymptotes to a finite value for each magnetic field strength, confirming the Karman-Howarth hypothesis as applied to MHD. The asymptotic value of the dimensionless dissipation rate is initially suppressed from the zero-mean-field value by the mean magnetic field but then approaches a constant value for higher values of the mean field strength. Additionally, for comparison, we perform a set of two-dimensional (2DMHD) and a set of reduced MHD (RMHD) simulations. We find that the RMHD results lie very close to the values corresponding to the high mean-field limit of the three-dimensional runs while the 2DMHD results admit distinct values far from both the zero mean field cases and the high mean field limit of the three-dimensional cases. These findings provide firm underpinnings for numerous applications in space and astrophysics wherein von Karman decay of turbulence is assumed.
This article reviews recent studies of scale interactions in magnetohydrodynamic turbulence. The present day increase of computing power, which allows for the exploration of different configurations of turbulence in conducting flows, and the development of shell-to-shell transfer functions, has led to detailed studies of interactions between the velocity and the magnetic field and between scales. In particular, processes such as induction and dynamo action, the damping of velocity fluctuations by the Lorentz force, or the development of anisotropies, can be characterized at different scales. In this context we consider three different configurations often studied in the literature: mechanically forced turbulence, freely decaying turbulence, and turbulence in the presence of a uniform magnetic field. Each configuration is of interest for different geophysical and astrophysical applications. Local and non-local transfers are discussed for each case. While the transfer between scales of solely kinetic or solely magnetic energy is local, transfers between kinetic and magnetic fields are observed to be local or non-local depending on the configuration. Scale interactions in the cascade of magnetic helicity are also reviewed. Based on the results, the validity of several usual assumptions in hydrodynamic turbulence, such as isotropy of the small scales or universality, is discussed.
We study the transition in dimensionality of a three-dimensional magnetohydrodynamic flow forced only mechanically, when the strength of a magnetic guiding field is gradually increased. We use numerical simulations to consider cases in which the mechanical forcing injects (or not) helicity in the flow. As the guiding field is increased, the strength of the magnetic field fluctuations decrease as a power law of the guiding field intensity. We show that for strong enough guiding fields, the helical magnetohydrodynamic flow can become almost two-dimensional. In this case, the mechanical energy can undergo a process compatible with an inverse cascade, being transferred preferentially towards scales larger than the forcing scale. The presence of helicity changes the spectral scaling of the small magnetic field fluctuations, and affects the statistics of the velocity field and of the velocity gradients. Moreover, at small scales the dynamics of the flow becomes dominated by a direct cascade of helicity, which can be used to derive scaling laws for the velocity field.