No Arabic abstract
In this work, we consider non-linear corrections to the Langevin effective theory of a heavy quark moving through a strongly coupled CFT plasma. In AdS/CFT, this system can be identified with that of a string stretched between the boundary and the horizon of an asymptotically AdS black-brane solution. We compute the Feynman-Vernon influence phase for the heavy quark by evaluating the Nambu-Goto action on a doubled string configuration. This configuration is the linearised solution of the string motion in the doubled black-brane geometry which has been proposed as the holographic dual of a thermal Schwinger-Keldysh contour of the CFT. Our expression for the influence phase passes non-trivial consistency conditions arising from the underlying unitarity and thermality of the bath. The local effective theory obeys the recently proposed non-linear fluctuation dissipation theorem relating the non-Gaussianity of thermal noise to the thermal jitter in the damping constant. This furnishes a non-trivial check for the validity of these relations derived in the weak coupling regime.
Plasma balls are droplets of deconfined plasma surrounded by a confining vacuum. We present the first holographic simulation of their real-time evolution via the dynamics of localized, finite-energy black holes in the five-dimensional anti-de Sitter (AdS) soliton background. The dual gauge theory is four-dimensional, N=4 super Yang-Mills compactified on a circle with supersymmetry-breaking boundary conditions. We consider horizonless initial data sourced by a massless scalar field. Prompt scalar field collapse then produces an excited black hole at the bottom of the geometry together with gravitational and scalar radiation. The radiation disperses to infinity in the noncompact directions and corresponds to particle production in the dual gauge theory. The black hole evolves toward the dual of an equilibrium plasma ball on a time scale longer than naively expected. This feature is a direct consequence of confinement and is caused by long-lived, periodic disturbances bouncing between the bottom of the AdS soliton and the AdS boundary.
Macroscopic parameters as well as precise information on the random force characterizing the Langevin type description of the nuclear fusion process around the Coulomb barrier are extracted from the microscopic dynamics of individual nucleons by exploiting the numerical simulation of the improved quantum molecular dynamics. It turns out that the dissipation dynamics of the relative motion between two fusing nuclei is caused by a non-Gaussian distribution of the random force. We find that the friction coefficient as well as the time correlation function of the random force takes particularly large values in a region a little bit inside of the Coulomb barrier. A clear non-Markovian effect is observed in the time correlation function of the random force. It is further shown that an emergent dynamics of the fusion process can be described by the generalized Langevin equation with memory effects by appropriately incorporating the microscopic information of individual nucleons through the random force and its time correlation function.
We study four-dimensional Chern-Simons theory on $D times mathbb{C}$ (where $D$ is a disk), which is understood to describe rational solutions of the Yang-Baxter equation from the work of Costello, Witten and Yamazaki. We find that the theory is dual to a boundary theory, that is a three-dimensional analogue of the two-dimensional chiral WZW model. This boundary theory gives rise to a current algebra that turns out to be an analytically-continued toroidal Lie algebra. In addition, we show how certain bulk correlation functions of two and three Wilson lines can be captured by boundary correlation functions of local operators in the three-dimensional WZW model. In particular, we reproduce the leading and subleading nontrivial contributions to the rational R-matrix purely from the boundary theory.
We show how to derive a simple integrator for the Langevin equation and illustrate how it is possible to check the accuracy of the obtained distribution on the fly, using the concept of effective energy introduced in a recent paper [J. Chem. Phys. 126, 014101 (2007)]. Our integrator leads to correct sampling also in the difficult high-friction limit. We also show how these ideas can be applied in practical simulations, using a Lennard-Jones crystal as a paradigmatic case.
Black branes in AdS5 appear in a four parameter family labeled by their velocity and temperature. Promoting these parameters to Goldstone modes or collective coordinate fields -- arbitrary functions of the coordinates on the boundary of AdS5 -- we use Einsteins equations together with regularity requirements and boundary conditions to determine their dynamics. The resultant equations turn out to be those of boundary fluid dynamics, with specific values for fluid parameters. Our analysis is perturbative in the boundary derivative expansion but is valid for arbitrary amplitudes. Our work may be regarded as a derivation of the nonlinear equations of boundary fluid dynamics from gravity. As a concrete application we find an explicit expression for the expansion of this fluid stress tensor including terms up to second order in the derivative expansion.