No Arabic abstract
We consider defects in 5d field theories corresponding to higher-rank generalizations of the $E_{N_f+1}$ theories; holographically dual to the Brandhuber-Oz background in type I String Theory. We concentrate on codimension 2 and 1 defects, corresponding, respectively, to 3d and 4d defect Quantum Field Theories. We study holographically such defect theories by considering supersymmetric probe D4- and D6-branes in the $AdS_6$, whose fluctuations allow us to study the spectrum of mesonic operators of the defect theories. In the case of D4-branes, we also consider wrappings in the internal space which can be regarded as generalizations of the configurations capturing the antisymmetric Wilson loop.
We determine the most general form of off-shell N=(1,1) supergravity field configurations in three dimensions by requiring that at least one off-shell Killing spinor exists. We then impose the field equations of the topologically massive off-shell supergravity and find a class of solutions whose properties crucially depend on the norm of the auxiliary vector field. These are spacelike-squashed and timelike-stretched AdS_3 for the spacelike and timelike norms, respectively. At the transition point where the norm vanishes, the solution is null warped AdS_3. This occurs when the coefficient of the Lorentz-Chern-Simons term is related to the AdS radius by $muell=2$. We find that the spacelike-squashed AdS_3 can be modded out by a suitable discrete subgroup of the isometry group, yielding an extremal black hole solution which avoid closed timelike curves.
We study gravitational quantum corrections in supersymmetric theories with warped extra dimensions. We develop for this a superfield formalism for linearized gauged supergravity. We show that the 1-loop effective Kahler potential is a simple functional of the KK spectrum in the presence of generic localized kinetic terms at the two branes. We also present a simple understanding of our results by showing that the leading matter effects are equivalent to suitable displacements of the branes. We then apply this general result to compute the gravity-mediated universal soft mass $m_0^2$ in models where the visible and the hidden sectors are sequestered at the two branes. We find that the contributions coming from radion mediation and brane-to-brane mediation are both negative in the minimal set-up, but the former can become positive if the gravitational kinetic term localized at the hidden brane has a sizeable coefficient. We then compare the features of the two extreme cases of flat and very warped geometry, and give an outlook on the building of viable models.
We provide further evidence that the recently constructed warped $AdS_6$ solutions in Type IIB supergravity are dual to 5d SCFTs that correspond to $(p,q)$ 5-brane webs with large numbers of like-charged external 5-branes. We study a number of specific examples, including the $T_N$ theory, and identify the bulk states dual to a class of operators with ${cal O}(N)$ scaling dimensions in terms of strings and string-webs embedded in the solutions.
We explore the connection of anti-de-Sitter supergravity in six dimensions, based on the exceptional F(4) superalgebra, and its boundary superconformal singleton theory. The interpretation of these results in terms of a D4-D8 system and its near horizon geometry is suggested.
We compute the ultraviolet divergences of holographic subregion complexity for the left and right factors of the thermofield double state in warped AdS$_3$ black holes, both for the action and the volume conjectures. Besides the linear divergences, which are also present in the BTZ black hole, additional logarithmic divergences appear. For the action conjecture, these log divergences are not affected by the arbitrarity in the length scale associated with the counterterm needed to ensure reparameterization invariance. We find that the subregion action complexity obeys the superadditivity property for the thermofield double in warped AdS$_3$, independently from the action counterterm coefficient. We study the temperature dependence of subregion complexity at constant angular momentum and we find that it is correlated with the sign of the specific heat.