No Arabic abstract
Galaxy clusters are the most massive gravitationally bound structures in the Universe. They grow by accreting smaller structures in a merging process that produces shocks and turbulence in the intra-cluster gas. We observed a ridge of radio emission connecting the merging galaxy clusters Abell 0399 and Abell 0401 with the Low Frequency Array (LOFAR) at 140 MHz. This emission requires a population of relativistic electrons and a magnetic field located in a filament between the two galaxy clusters. We performed simulations to show that a volume-filling distribution of weak shocks may re-accelerate a pre-existing population of relativistic particles, producing emission at radio wavelengths that illuminates the magnetic ridge.
Collisions between galaxy clusters dissipate enormous amounts of energy in the intra-cluster medium (ICM) through turbulence and shocks. In the process, Mpc-scale diffuse synchrotron emission in form of radio halos and relics can form. However, little is known about the very early phase of the collision. We used deep radio observations from 53 MHz to 1.5 GHz to study the pre-merging galaxy clusters A1758N and A1758S that are $sim2$ Mpc apart. We confirm the presence of a giant bridge of radio emission connecting the two systems that was reported only tentatively in our earlier work. This is the second large-scale radio bridge observed to date in a cluster pair. The bridge is clearly visible in the LOFAR image at 144 MHz and tentatively detected at 53 MHz. Its mean radio emissivity is more than one order of magnitude lower than that of the radio halos in A1758N and A1758S. Interestingly, the radio and X-ray emissions of the bridge are correlated. Our results indicate that non-thermal phenomena in the ICM can be generated also in the region of compressed gas in-between infalling systems.
We report the detection of diffuse radio emission which might be connected to a large-scale filament of the cosmic web covering a 8deg x 8deg area in the sky, likely associated with a z~0.1 over-density traced by nine massive galaxy clusters. In this work, we present radio observations of this region taken with the Sardinia Radio Telescope. Two of the clusters in the field host a powerful radio halo sustained by violent ongoing mergers and provide direct proof of intra-cluster magnetic fields. In order to investigate the presence of large-scale diffuse radio synchrotron emission in and beyond the galaxy clusters in this complex system, we combined the data taken at 1.4 GHz obtained with the Sardinia Radio Telescope with higher resolution data taken with the NRAO VLA Sky Survey. We found 28 candidate new sources with a size larger and X-ray emission fainter than known diffuse large-scale synchrotron cluster sources for a given radio power. This new population is potentially the tip of the iceberg of a class of diffuse large-scale synchrotron sources associated with the filaments of the cosmic web. In addition, we found in the field a candidate new giant radio galaxy.
In the local universe, a large fraction of the baryon content is believed to exist as diffuse gas in filaments. While this gas is directly observable in X-ray emission around clusters of galaxies, it is primarily studied through its UV absorption. Recently, X-ray observations of large-scale filaments connecting to the cosmic web around the nearby ($z=0.05584$) cluster Abell 133 were reported. One of these filaments is intersected by the sightline to quasar [VV98] J010250.2$-$220929, allowing for a first-ever census of cold, cool, and warm gas in a filament of the cosmic web where hot gas has been seen in X-ray emission. Here, we present UV observations with the Cosmic Origins Spectrograph and optical observations with the Magellan Echellette spectrograph of [VV98] J010250.2$-$220929. We find no evidence of cold, cool, or warm gas associated with the filament. In particular, we set a $2sigma$ upper limit on Ly$alpha$ absorption of $log(N_{HI} / textrm{cm}^{-2}) < 13.7$, assuming a Doppler parameter of $b=20,textrm{km},textrm{s}^{-1}$. As this sightline is ${sim}1100,textrm{pkpc}$ ($0.7R_textrm{vir}$) from the center of Abell 133, we suggest that all gas in the filament is hot at this location, or that any warm, cool, or cold components are small and clumpy. A broader census of this system -- combining more UV sightlines, deeper X-ray observations, and a larger redshift catalog of cluster members -- is needed to better understand the roles of filaments around clusters.
The role of the cosmic web in shaping galaxy properties is investigated in the GAMA spectroscopic survey in the redshift range $0.03 leq z leq 0.25$. The stellar mass, $u - r$ dust corrected colour and specific star formation rate (sSFR) of galaxies are analysed as a function of their distances to the 3D cosmic web features, such as nodes, filaments and walls, as reconstructed by DisPerSE. Significant mass and type/colour gradients are found for the whole population, with more massive and/or passive galaxies being located closer to the filament and wall than their less massive and/or star-forming counterparts. Mass segregation persists among the star-forming population alone. The red fraction of galaxies increases when closing in on nodes, and on filaments regardless of the distance to nodes. Similarly, the star-forming population reddens (or lowers its sSFR) at fixed mass when closing in on filament, implying that some quenching takes place. Comparable trends are also found in the state-of-the-art hydrodynamical simulation Horizon-AGN. These results suggest that on top of stellar mass and large-scale density, the traceless component of the tides from the anisotropic large-scale environment also shapes galactic properties. An extension of excursion theory accounting for filamentary tides provides a qualitative explanation in terms of anisotropic assembly bias: at a given mass, the accretion rate varies with the orientation and distance to filaments. It also explains the absence of type/colour gradients in the data on smaller, non-linear scales.
We investigate the dependence of the galaxy properties on cosmic web environments using the most up-to-date hydrodynamic simulation: Evolution and Assembly of Galaxies and their Environments (EAGLE). The baryon fractions in haloes and the amplitudes of the galaxy luminosity function decrease going from knots to filaments to sheets to voids. Interestingly, the value of L$^*$ varies dramatically in different cosmic web environments. At z = 0, we find a characteristic halo mass of $10^{12} h^{-1}rm M_{odot}$, below which the stellar-to-halo mass ratio is higher in knots while above which it reverses. This particular halo mass corresponds to a characteristic stellar mass of $1.8times 10^{10} h^{-1}rm M_{odot}$. Below the characteristic stellar mass central galaxies have redder colors, lower sSFRs and higher metallicities in knots than those in filaments, sheets and voids, while above this characteristic stellar mass, the cosmic web environmental dependences either reverse or vanish. Such dependences can be attributed to the fact that the active galaxy fraction decreases along voids, sheets, filaments and knots. The cosmic web dependences get weaker towards higher redshifts for most of the explored galaxy properties and scaling relations, except for the gas metallicity vs. stellar mass relation.