Do you want to publish a course? Click here

Target Encirclement with any Smooth Pattern Using Range-only Measurements

87   0   0.0 ( 0 )
 Added by Fei Dong
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This paper proposes a coordinate-free controller to drive a mobile robot to encircle a target at unknown position by only using range measurements. Different from the existing works, a backstepping based controller is proposed to encircle the target with zero steady-state error for any desired smooth pattern. Moreover, we show its asymptotic exponential convergence under a fixed set of control parameters, which are independent of the initial distance to the target. The effectiveness and advantages of the proposed controller are validated via simulations.



rate research

Read More

This paper provides a constructive passivity-based control approach to solve the set-point regulation problem for input-affine continuous nonlinear systems while considering saturation in the inputs. As customarily in passivity-based control, the methodology consists of two steps: energy shaping and damping injection. In terms of applicability, the proposed controllers have two advantages concerning other passivity-based control techniques: (i) the energy shaping is carried out without solving partial differential equations, and (ii) the damping injection is performed without measuring the passive output. The proposed methodology is suitable to control a broad range of physical systems, e.g., mechanical, electrical, and electro-mechanical systems. We illustrate the applicability of the technique by designing controllers for systems in different physical domains, where we validate the analytical results via simulations and experiments.
This paper presents two control algorithms enabling a UAV to circumnavigate an unknown target using range and range rate (i.e., the derivative of range) measurements. Given a prescribed orbit radius, both control algorithms (i) tend to drive the UAV toward the tangent of prescribed orbit when the UAV is outside or on the orbit, and (ii) apply zero control input if the UAV is inside the desired orbit. The algorithms differ in that, the first algorithm is smooth and unsaturated while the second algorithm is non-smooth and saturated. By analyzing properties associated with the bearing angle of the UAV relative to the target and through proper design of Lyapunov functions, it is shown that both algorithms produce the desired orbit for an arbitrary initial state. Three examples are provided as a proof of concept.
This paper presents an algorithm that makes novel use of distance measurements alongside a constrained Kalman filter to accurately estimate pelvis, thigh, and shank kinematics for both legs during walking and other body movements using only three wearable inertial measurement units (IMUs). The distance measurement formulation also assumes hinge knee joint and constant body segment length, helping produce estimates that are near or in the constraint space for better estimator stability. Simulated experiments shown that inter-IMU distance measurement is indeed a promising new source of information to improve the pose estimation of inertial motion capture systems under a reduced sensor count configuration. Furthermore, experiments show that performance improved dramatically for dynamic movements even at high noise levels (e.g., $sigma_{dist} = 0.2$ m), and that acceptable performance for normal walking was achieved at $sigma_{dist} = 0.1$ m. Nevertheless, further validation is recommended using actual distance measurement sensors.
We study the problem of estimating the parameters (i.e., infection rate and recovery rate) governing the spread of epidemics in networks. Such parameters are typically estimated by measuring various characteristics (such as the number of infected and recovered individuals) of the infected populations over time. However, these measurements also incur certain costs, depending on the population being tested and the times at which the tests are administered. We thus formulate the epidemic parameter estimation problem as an optimization problem, where the goal is to either minimize the total cost spent on collecting measurements, or to optimize the parameter estimates while remaining within a measurement budget. We show that these problems are NP-hard to solve in general, and then propose approximation algorithms with performance guarantees. We validate our algorithms using numerical examples.
152 - Jun Liu , Yiming Meng , Yinan Li 2020
Stability and safety are two important aspects in safety-critical control of dynamical systems. It has been a well established fact in control theory that stability properties can be characterized by Lyapunov functions. Reachability properties can also be naturally captured by Lyapunov functions for finite-time stability. Motivated by safety-critical control applications, such as in autonomous systems and robotics, there has been a recent surge of interests in characterizing safety properties using barrier functions. Lyapunov and barrier functions conditions, however, are sometimes viewed as competing objectives. In this paper, we provide a unified theoretical treatment of Lyapunov and barrier functions in terms of converse theorems for stability properties with safety guarantees and reach-avoid-stay type specifications. We show that if a system (modeled as a perturbed dynamical system) possesses a stability with safety property, then there exists a smooth Lyapunov function to certify such a property. This Lyapunov function is shown to be defined on the entire set of initial conditions from which solutions satisfy this property. A similar but slightly weaker statement is made for reach-avoid-stay specifications. We show by a simple example that the latter statement cannot be strengthened without additional assumptions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا