No Arabic abstract
Hot-deformed anisotropic Nd$-$Fe$-$B nanocrystalline magnets have been subjected to the grain-boundary diffusion process (GBDP) using a $mathrm{Pr}_{70}mathrm{Cu}_{30}$ eutectic alloy. The resulting grain microstructure, consisting of shape-anisotropic Nd$-$Fe$-$B nanocrystals surrounded by a Pr$-$Cu-rich intergranular grain-boundary phase, has been investigated using unpolarized small-angle neutron scattering (SANS) and very small-angle neutron scattering (VSANS). The neutron data have been analyzed using the generalized Guinier-Porod model and by computing model-independently the distance distribution function. We find that the GBDP results in a change of the geometry of the scattering particles:~In the small-$q$ regime the scattering from the as-prepared sample exhibits a slope of about $2$, which is characteristic for the scattering from two-dimensional platelet-shaped objects, while the GBDP sample manifests a slope of about $1$, which is the scattering signature of one-dimensional elongated objects. The evolution of the Porod exponent indicates the smoothing of the grain surfaces due to the GBDP, which is accompanied by an increase of the coercivity.
Mg grain boundary (GB) segregation and GB diffusion can impact the processing and properties of Al-Mg alloys. Yet, Mg GB diffusion in Al has not been measured experimentally or predicted by simulations. We apply atomistic computer simulations to predict the amount and the free energy of Mg GB segregation, and the impact of segregation on GB diffusion of both alloy components. At low temperatures, Mg atoms segregated to a tilt GB form clusters with highly anisotropic shapes. Mg diffuses in Al GBs slower than Al itself, and both components diffuse slowly in comparison with Al GB self-diffusion. Thus, Mg segregation significantly reduces the rate of mass transport along GBs in Al-Mg alloys. The reduced atomic mobility can be responsible for the improved stability of the microstructure at elevated temperatures.
Due to their possibility to encode information and realize low-energy-consumption quantum devices, control and manipulation of the valley degree of freedom have been widely studied in electronic systems. In contrast, the phononic counterpart--valley phononics--has been largely unexplored, despite the importance in both fundamental science and practical applications. In this work, we demonstrate that the control of valleys is also applicable for phonons in graphene by using a grain boundary. In particular, perfect valley filtering effect is observed at certain energy windows for flexural modes and found to be closely related to the anisotropy of phonon valley pockets. Moreover, valley filtering may be further improved using Fano-like resonance. Our findings reveal the possibility of valley phononics, paving the road towards purposeful phonon engineering and future valley phononics.
While it is known that alloy components can segregate to grain boundaries (GBs), and that the atomic mobility in GBs greatly exceeds the atomic mobility in the lattice, little is known about the effect of GB segregation on GB diffusion. Atomistic computer simulations offer a means of gaining insights into the segregation-diffusion relationship by computing the GB diffusion coefficients of the alloy components as a function of their segregated amounts. In such simulations, thermodynamically equilibrium GB segregation is prepared by a semi-grand canonical Monte Carlo method, followed by calculation of the diffusion coefficients of all alloy components by molecular dynamics. As a demonstration, the proposed methodology is applied to a GB is the Cu-Ag system. The GB diffusivities obtained exhibit non-trivial composition dependencies that can be explained by site blocking, site competition, and the onset of GB disordering due to the premelting effect.
A detailed theoretical and numerical investigation of the infinitesimal single-crystal gradient plasticity and grain-boundary theory of Gurtin (2008) A theory of grain boundaries that accounts automatically for grain misorientation and grain-boundary orientation. Journal of the Mechanics and Physics of Solids 56 (2), 640-662, is performed. The governing equations and flow laws are recast in variational form. The associated incremental problem is formulated in minimization form and provides the basis for the subsequent finite element formulation. Various choices of the kinematic measure used to characterize the ability of the grain boundary to impede the flow of dislocations are compared. An alternative measure is also suggested. A series of three-dimensional numerical examples serve to elucidate the theory.
Grain-to-grain Curie temperature (Tc) variation in the media reduces signal-to-noise ratio due to its contribution in transition jitter noise, especially when average grain size is pushing down to increase the area storage capacity. A thermally insulating magnetic grain boundary may suppress such grain-to-grain Tc variation, especially at small grain size. Here we present an experimental study on the effect of adding thermally-insulating magnetic oxide, in particular BaFexOy, as part of the grain boundary materials in granular FePt-C HAMR media. It is found that the BaFexOy is chemically inert to FePt and the chemical ordering of FePt-BaFexOy-C media are similar to that of FePt-C meida. By tuning the volume fraction of BaFexOy and C, well-separated FePt grains (average grain size = 6.8 nm) surrounded by BaFexOy shell with perpendicular Hc above 35 kOe can be obtained. Transmission electron microscopy study with chemical analysis shows that the magnetic oxide appears to be crystalline and surround the FePt grains with immediate full enclosure. Magnetic measurements indicate an effective increase of magnetic grain size at temperatures below FePt Curie temperature. Pulsed laser pump-probe measurement indicates a measurable reduction of Curie temperature variation for the FePt-BaFexOy-C media with carefully comparison with the reference FePt-C media.