No Arabic abstract
Recently, speaker embeddings extracted from a speaker discriminative deep neural network (DNN) yield better performance than the conventional methods such as i-vector. In most cases, the DNN speaker classifier is trained using cross entropy loss with softmax. However, this kind of loss function does not explicitly encourage inter-class separability and intra-class compactness. As a result, the embeddings are not optimal for speaker recognition tasks. In this paper, to address this issue, three different margin based losses which not only separate classes but also demand a fixed margin between classes are introduced to deep speaker embedding learning. It could be demonstrated that the margin is the key to obtain more discriminative speaker embeddings. Experiments are conducted on two public text independent tasks: VoxCeleb1 and Speaker in The Wild (SITW). The proposed approach can achieve the state-of-the-art performance, with 25% ~ 30% equal error rate (EER) reduction on both tasks when compared to strong baselines using cross entropy loss with softmax, obtaining 2.238% EER on VoxCeleb1 test set and 2.761% EER on SITW core-core test set, respectively.
In this paper we investigate the GMM-derived (GMMD) features for adaptation of deep neural network (DNN) acoustic models. The adaptation of the DNN trained on GMMD features is done through the maximum a posteriori (MAP) adaptation of the auxiliary GMM model used for GMMD feature extraction. We explore fusion of the adapted GMMD features with conventional features, such as bottleneck and MFCC features, in two different neural network architectures: DNN and time-delay neural network (TDNN). We analyze and compare different types of adaptation techniques such as i-vectors and feature-space adaptation techniques based on maximum likelihood linear regression (fMLLR) with the proposed adaptation approach, and explore their complementarity using various types of fusion such as feature level, posterior level, lattice level and others in order to discover the best possible way of combination. Experimental results on the TED-LIUM corpus show that the proposed adaptation technique can be effectively integrated into DNN and TDNN setups at different levels and provide additional gain in recognition performance: up to 6% of relative word error rate reduction (WERR) over the strong feature-space adaptation techniques based on maximum likelihood linear regression (fMLLR) speaker adapted DNN baseline, and up to 18% of relative WERR in comparison with a speaker independent (SI) DNN baseline model, trained on conventional features. For TDNN models the proposed approach achieves up to 26% of relative WERR in comparison with a SI baseline, and up 13% in comparison with the model adapted by using i-vectors. The analysis of the adapted GMMD features from various points of view demonstrates their effectiveness at different levels.
We present a structured overview of adaptation algorithms for neural network-based speech recognition, considering both hybrid hidden Markov model / neural network systems and end-to-end neural network systems, with a focus on speaker adaptation, domain adaptation, and accent adaptation. The overview characterizes adaptation algorithms as based on embeddings, model parameter adaptation, or data augmentation. We present a meta-analysis of the performance of speech recognition adaptation algorithms, based on relative error rate reductions as reported in the literature.
The goal of this paper is to adapt speaker embeddings for solving the problem of speaker diarisation. The quality of speaker embeddings is paramount to the performance of speaker diarisation systems. Despite this, prior works in the field have directly used embeddings designed only to be effective on the speaker verification task. In this paper, we propose three techniques that can be used to better adapt the speaker embeddings for diarisation: dimensionality reduction, attention-based embedding aggregation, and non-speech clustering. A wide range of experiments is performed on various challenging datasets. The results demonstrate that all three techniques contribute positively to the performance of the diarisation system achieving an average relative improvement of 25.07% in terms of diarisation error rate over the baseline.
Attacking deep learning based biometric systems has drawn more and more attention with the wide deployment of fingerprint/face/speaker recognition systems, given the fact that the neural networks are vulnerable to the adversarial examples, which have been intentionally perturbed to remain almost imperceptible for human. In this paper, we demonstrated the existence of the universal adversarial perturbations~(UAPs) for the speaker recognition systems. We proposed a generative network to learn the mapping from the low-dimensional normal distribution to the UAPs subspace, then synthesize the UAPs to perturbe any input signals to spoof the well-trained speaker recognition model with high probability. Experimental results on TIMIT and LibriSpeech datasets demonstrate the effectiveness of our model.
We propose an end-to-end speaker-attributed automatic speech recognition model that unifies speaker counting, speech recognition, and speaker identification on monaural overlapped speech. Our model is built on serialized output training (SOT) with attention-based encoder-decoder, a recently proposed method for recognizing overlapped speech comprising an arbitrary number of speakers. We extend SOT by introducing a speaker inventory as an auxiliary input to produce speaker labels as well as multi-speaker transcriptions. All model parameters are optimized by speaker-attributed maximum mutual information criterion, which represents a joint probability for overlapped speech recognition and speaker identification. Experiments on LibriSpeech corpus show that our proposed method achieves significantly better speaker-attributed word error rate than the baseline that separately performs overlapped speech recognition and speaker identification.