Do you want to publish a course? Click here

Linear Lower Bounds and Conditioning of Differentiable Games

295   0   0.0 ( 0 )
 Added by Adam Ibrahim
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Recent successes of game-theoretic formulations in ML have caused a resurgence of research interest in differentiable games. Overwhelmingly, that research focuses on methods and upper bounds on their speed of convergence. In this work, we approach the question of fundamental iteration complexity by providing lower bounds to complement the linear (i.e. geometric) upper bounds observed in the literature on a wide class of problems. We cast saddle-point and min-max problems as 2-player games. We leverage tools from single-objective convex optimisation to propose new linear lower bounds for convex-concave games. Notably, we give a linear lower bound for $n$-player differentiable games, by using the spectral properties of the update operator. We then propose a new definition of the condition number arising from our lower bound analysis. Unlike past definitions, our condition number captures the fact that linear rates are possible in games, even in the absence of strong convexity or strong concavity in the variables.



rate research

Read More

143 - Kaiyi Ji , Yingbin Liang 2021
Bilevel optimization has recently attracted growing interests due to its wide applications in modern machine learning problems. Although recent studies have characterized the convergence rate for several such popular algorithms, it is still unclear how much further these convergence rates can be improved. In this paper, we address this fundamental question from two perspectives. First, we provide the first-known lower complexity bounds of $widetilde{Omega}(frac{1}{sqrt{mu_x}mu_y})$ and $widetilde Omegabig(frac{1}{sqrt{epsilon}}min{frac{1}{mu_y},frac{1}{sqrt{epsilon^{3}}}}big)$ respectively for strongly-convex-strongly-convex and convex-strongly-convex bilevel optimizations. Second, we propose an accelerated bilevel optimizer named AccBiO, for which we provide the first-known complexity bounds without the gradient boundedness assumption (which was made in existing analyses) under the two aforementioned geometries. We also provide significantly tighter upper bounds than the existing complexity when the bounded gradient assumption does hold. We show that AccBiO achieves the optimal results (i.e., the upper and lower bounds match up to logarithmic factors) when the inner-level problem takes a quadratic form with a constant-level condition number. Interestingly, our lower bounds under both geometries are larger than the corresponding optimal complexities of minimax optimization, establishing that bilevel optimization is provably more challenging than minimax optimization.
We study reinforcement learning (RL) with linear function approximation. Existing algorithms for this problem only have high-probability regret and/or Probably Approximately Correct (PAC) sample complexity guarantees, which cannot guarantee the convergence to the optimal policy. In this paper, in order to overcome the limitation of existing algorithms, we propose a new algorithm called FLUTE, which enjoys uniform-PAC convergence to the optimal policy with high probability. The uniform-PAC guarantee is the strongest possible guarantee for reinforcement learning in the literature, which can directly imply both PAC and high probability regret bounds, making our algorithm superior to all existing algorithms with linear function approximation. At the core of our algorithm is a novel minimax value function estimator and a multi-level partition scheme to select the training samples from historical observations. Both of these techniques are new and of independent interest.
We study reinforcement learning for two-player zero-sum Markov games with simultaneous moves in the finite-horizon setting, where the transition kernel of the underlying Markov games can be parameterized by a linear function over the current state, both players actions and the next state. In particular, we assume that we can control both players and aim to find the Nash Equilibrium by minimizing the duality gap. We propose an algorithm Nash-UCRL-VTR based on the principle Optimism-in-Face-of-Uncertainty. Our algorithm only needs to find a Coarse Correlated Equilibrium (CCE), which is computationally very efficient. Specifically, we show that Nash-UCRL-VTR can provably achieve an $tilde{O}(dHsqrt{T})$ regret, where $d$ is the linear function dimension, $H$ is the length of the game and $T$ is the total number of steps in the game. To access the optimality of our algorithm, we also prove an $tilde{Omega}( dHsqrt{T})$ lower bound on the regret. Our upper bound matches the lower bound up to logarithmic factors, which suggests the optimality of our algorithm.
We study the problem of high-dimensional linear regression in a robust model where an $epsilon$-fraction of the samples can be adversarially corrupted. We focus on the fundamental setting where the covariates of the uncorrupted samples are drawn from a Gaussian distribution $mathcal{N}(0, Sigma)$ on $mathbb{R}^d$. We give nearly tight upper bounds and computational lower bounds for this problem. Specifically, our main contributions are as follows: For the case that the covariance matrix is known to be the identity, we give a sample near-optimal and computationally efficient algorithm that outputs a candidate hypothesis vector $widehat{beta}$ which approximates the unknown regression vector $beta$ within $ell_2$-norm $O(epsilon log(1/epsilon) sigma)$, where $sigma$ is the standard deviation of the random observation noise. An error of $Omega (epsilon sigma)$ is information-theoretically necessary, even with infinite sample size. Prior work gave an algorithm for this problem with sample complexity $tilde{Omega}(d^2/epsilon^2)$ whose error guarantee scales with the $ell_2$-norm of $beta$. For the case of unknown covariance, we show that we can efficiently achieve the same error guarantee as in the known covariance case using an additional $tilde{O}(d^2/epsilon^2)$ unlabeled examples. On the other hand, an error of $O(epsilon sigma)$ can be information-theoretically attained with $O(d/epsilon^2)$ samples. We prove a Statistical Query (SQ) lower bound providing evidence that this quadratic tradeoff in the sample size is inherent. More specifically, we show that any polynomial time SQ learning algorithm for robust linear regression (in Hubers contamination model) with estimation complexity $O(d^{2-c})$, where $c>0$ is an arbitrarily small constant, must incur an error of $Omega(sqrt{epsilon} sigma)$.
Recent work has shown how to embed differentiable optimization problems (that is, problems whose solutions can be backpropagated through) as layers within deep learning architectures. This method provides a useful inductive bias for certain problems, but existing software for differentiable optimization layers is rigid and difficult to apply to new settings. In this paper, we propose an approach to differentiating through disciplined convex programs, a subclass of convex optimization problems used by domain-specific languages (DSLs) for convex optimization. We introduce disciplined parametrized programming, a subset of disciplined convex programming, and we show that every disciplined parametrized program can be represented as the composition of an affine map from parameters to problem data, a solver, and an affine map from the solvers solution to a solution of the original problem (a new form we refer to as affine-solver-affine form). We then demonstrate how to efficiently differentiate through each of these components, allowing for end-to-end analytical differentiation through the entire convex program. We implement our methodology in version 1.1 of CVXPY, a popular Python-embedded DSL for convex optimization, and additionally implement differentiable layers for disciplined convex programs in PyTorch and TensorFlow 2.0. Our implementation significantly lowers the barrier to using convex optimization problems in differentiable programs. We present applications in linear machine learning models and in stochastic control, and we show that our layer is competitive (in execution time) compared to specialized differentiable solvers from past work.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا