Do you want to publish a course? Click here

Brain Maturation Study during Adolescence Using Graph Laplacian Learning Based Fourier Transform

71   0   0.0 ( 0 )
 Added by Junqi Wang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Objective: Longitudinal neuroimaging studies have demonstrated that adolescence is the crucial developmental epoch of continued brain growth and change. A large number of researchers dedicate to uncovering the mechanisms about brain maturity during adolescence. Motivated by both achievement in graph signal processing and recent evidence that some brain areas act as hubs connecting functionally specialized systems, we proposed an approach to detect these regions from spectral analysis perspective. In particular, as human brain undergoes substantial development throughout adolescence, we addressed the challenge by evaluating the functional network difference among age groups from functional magnetic resonance imaging (fMRI) observations. Methods: We treated these observations as graph signals defined on the parcellated functional brain regions and applied graph Laplacian learning based Fourier Transform (GLFT) to transform the original graph signals into frequency domain. Eigen-analysis was conducted afterwards to study the behavior of the corresponding brain regions, which enables the characterization of brain maturation. Result: We first evaluated our method on the synthetic data and further applied the method to resting and task state fMRI imaging data from Philadelphia Neurodevelopmental Cohort (PNC) dataset, comprised of normally developing adolescents from 8 to 22. The model provided a highest accuracy of 95.69% in distinguishing different adolescence stages. Conclusion: We detected 13 hubs from resting state fMRI and 16 hubs from task state fMRI that are highly related to brain maturation process. Significance: The proposed GLFT method is powerful in extracting the brain connectivity patterns and identifying hub regions with a high prediction power



rate research

Read More

In this paper, we redefine the Graph Fourier Transform (GFT) under the DSP$_mathrm{G}$ framework. We consider the Jordan eigenvectors of the directed Laplacian as graph harmonics and the corresponding eigenvalues as the graph frequencies. For this purpose, we propose a shift operator based on the directed Laplacian of a graph. Based on our shift operator, we then define total variation of graph signals, which is used in frequency ordering. We achieve natural frequency ordering and interpretation via the proposed definition of GFT. Moreover, we show that our proposed shift operator makes the LSI filters under DSP$_mathrm{G}$ to become polynomial in the directed Laplacian.
Emotion perception is essential to affective and cognitive development which involves distributed brain circuits. The ability of emotion identification begins in infancy and continues to develop throughout childhood and adolescence. Understanding the development of brains emotion circuitry may help us explain the emotional changes observed during adolescence. Our previous study delineated the trajectory of brain functional connectivity (FC) from late childhood to early adulthood during emotion identification tasks. In this work, we endeavour to deepen our understanding from association to causation. We proposed a Bayesian incorporated linear non-Gaussian acyclic model (BiLiNGAM), which incorporated our previous association model into the prior estimation pipeline. In particular, it can jointly estimate multiple directed acyclic graphs (DAGs) for multiple age groups at different developmental stages. Simulation results indicated more stable and accurate performance over various settings, especially when the sample size was small (high-dimensional cases). We then applied to the analysis of real data from the Philadelphia Neurodevelopmental Cohort (PNC). This included 855 individuals aged 8-22 years who were divided into five different adolescent stages. Our network analysis revealed the development of emotion-related intra- and inter- modular connectivity and pinpointed several emotion-related hubs. We further categorized the hubs into two types: in-hubs and out-hubs, as the center of receiving and distributing information. Several unique developmental hub structures and group-specific patterns were also discovered. Our findings help provide a causal understanding of emotion development in the human brain.
The frequent exchange of multimedia information in the present era projects an increasing demand for copyright protection. In this work, we propose a novel audio zero-watermarking technology based on graph Fourier transform for enhancing the robustness with respect to copyright protection. In this approach, the combined shift operator is used to construct the graph signal, upon which the graph Fourier analysis is performed. The selected maximum absolute graph Fourier coefficients representing the characteristics of the audio segment are then encoded into a feature binary sequence using K-means algorithm. Finally, the resultant feature binary sequence is XOR-ed with the watermark binary sequence to realize the embedding of the zero-watermarking. The experimental studies show that the proposed approach performs more effectively in resisting common or synchronization attacks than the existing state-of-the-art methods.
89 - Moo K. Chung 2021
Recent developments in graph theoretic analysis of complex networks have led to deeper understanding of brain networks. Many complex networks show similar macroscopic behaviors despite differences in the microscopic details. Probably two most often observed characteristics of complex networks are scale-free and small-world properties. In this paper, we will explore whether brain networks follow scale-free and small-worldness among other graph theory properties.
103 - A. Yamin , M. Dayan , L. Squarcina 2019
fMRI is a unique non-invasive approach for understanding the functional organization of the human brain, and task-based fMRI promotes identification of functionally relevant brain regions associated with a given task. Here, we use fMRI (using the Poffenberger Paradigm) data collected in mono- and dizygotic twin pairs to propose a novel approach for assessing similarity in functional networks. In particular, we compared network similarity between pairs of twins in task-relevant and task-orthogonal networks. The proposed method measures the similarity between functional networks using a geodesic distance between graph Laplacians. With method we show that networks are more similar in monozygotic twins compared to dizygotic twins. Furthermore, the similarity in monozygotic twins is higher for task-relevant, than task-orthogonal networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا