No Arabic abstract
We analyse the charging process of quantum batteries with general harmonic power. To describe the charge efficiency, we introduce the charge saturation and the charging power, and divide the charging mode into the saturated charging mode and the unsaturated charging mode. The relationships between the time-dependent charge saturation and the parameters of general driving field are discussed both analytically and numerically. And according to the Floquet theorem, we give the expressions of time-dependent charge saturation with the quasiengery and the Floquet states of the system. With both the analytical and numerical results, we find the optimal parameters to reach the best charging efficiency.
We study the charging process of open quantum batteries mediated by a common dissipative environment in two different scenarios. In the first case, we consider a quantum charger-battery model in the presence of a non-Markovian environment. Where the battery can be properly charged in a strong coupling regime, without any external power and any direct interaction with the charger, i.e., a wireless-like charging happens. The environment plays a major role in the charging of the battery, while this does not happen in a weak coupling regime. In the second scenario, we show the effect of individual and collective spontaneous emission rates on the charging process of quantum batteries by considering a two-qubit system in the presence of Markovian dynamics. Our results demonstrate that open batteries can be satisfactorily charged in Markovian dynamics by employing an underdamped regime and/or strong external fields. We also present a robust battery by taking into account subradiant states and an intermediate regime. Moreover, we propose an experimental setup to explore the ergotropy in the first scenario.
Quantum devices are systems that can explore quantum phenomena, like entanglement or coherence, for example, to provide some enhancement performance concerning their classical counterparts. In particular, quantum batteries are devices that use entanglement as main element in its high performance in the charging powerful. In this paper, we explore the quantum battery performance and its relationship with the amount of entanglement that arises during the charging process. By using a general approach to a two and three-cell battery, our results suggest that entanglement is not the main resource to quantum batteries, where there is a non-trivial correlation-coherence trade-off as resource for the high efficiency of such quantum devices.
The performance of quantum technologies that use entanglement and coherence as resource is highly limited by decohering effects due to their interaction with some environment. Particularly, it is important to take into account situations where such devices unavoidably interact with a surrounding. Here, we study memory effects on energy and ergotropy of quantum batteries in the framework of open system dynamics, where the battery and charger are individually allowed to access a bosonic environment. Our investigation shows that the battery can be fully charged and its energy can be preserved for long times in non-Markovian dynamics compared with Markovian dynamics. In addition, the total stored energy can be completely extracted as work and discharge time becomes more longer as non-Markovianity increases. Our results indicate that memory effects can play a significant role in improving the performance of quantum batteries.
Collective behavior strongly influences the charging dynamics of quantum batteries (QBs). Here, we study the impact of nonlocal correlations on the energy stored in a system of $N$ QBs. A unitary charging protocol based on a Sachdev-Ye-Kitaev (SYK) quench Hamiltonian is thus introduced and analyzed. SYK models describe strongly interacting systems with nonlocal correlations and fast thermalization properties. Here, we demonstrate that, once charged, the average energy stored in the QB is very stable, realizing an ultraprecise charging protocol. By studying fluctuations of the average energy stored, we show that temporal fluctuations are strongly suppressed by the presence of nonlocal correlations at all time scales. A comparison with other paradigmatic examples of many-body QBs shows that this is linked to the collective dynamics of the SYK model and its high level of entanglement. We argue that such feature relies on the fast scrambling property of the SYK Hamiltonian, and on its fast thermalization properties, promoting this as an ideal model for the ultimate temporal stability of a generic QB. Finally, we show that the temporal evolution of the ergotropy, a quantity that characterizes the amount of extractable work from a QB, can be a useful probe to infer the thermalization properties of a many-body quantum system.
An approximate solution is presented for simple harmonic motion in the presence of damping by a force which is a general power-law function of the velocity. The approximation is shown to be quite robust, allowing for a simple way to investigate amplitude decay in the presence of general types of weak, nonlinear damping.