Do you want to publish a course? Click here

Predicting Research Trends with Semantic and Neural Networks with an application in Quantum Physics

64   0   0.0 ( 0 )
 Added by Mario Krenn
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The vast and growing number of publications in all disciplines of science cannot be comprehended by a single human researcher. As a consequence, researchers have to specialize in narrow sub-disciplines, which makes it challenging to uncover scientific connections beyond the own field of research. Thus access to structured knowledge from a large corpus of publications could help pushing the frontiers of science. Here we demonstrate a method to build a semantic network from published scientific literature, which we call SemNet. We use SemNet to predict future trends in research and to inspire new, personalized and surprising seeds of ideas in science. We apply it in the discipline of quantum physics, which has seen an unprecedented growth of activity in recent years. In SemNet, scientific knowledge is represented as an evolving network using the content of 750,000 scientific papers published since 1919. The nodes of the network correspond to physical concepts, and links between two nodes are drawn when two physical concepts are concurrently studied in research articles. We identify influential and prize-winning research topics from the past inside SemNet thus confirm that it stores useful semantic knowledge. We train a deep neural network using states of SemNet of the past, to predict future developments in quantum physics research, and confirm high quality predictions using historic data. With the neural network and theoretical network tools we are able to suggest new, personalized, out-of-the-box ideas, by identifying pairs of concepts which have unique and extremal semantic network properties. Finally, we consider possible future developments and implications of our findings.



rate research

Read More

Scientific publishing seems to be at a turning point. Its paradigm has stayed basically the same for 300 years but is now challenged by the increasing volume of articles that makes it very hard for scientists to stay up to date in their respective fields. In fact, many have pointed out serious flaws of current scientific publishing practices, including the lack of accuracy and efficiency of the reviewing process. To address some of these problems, we apply here the general principles of the Web and the Semantic Web to scientific publishing, focusing on the reviewing process. We want to determine if a fine-grained model of the scientific publishing workflow can help us make the reviewing processes better organized and more accurate, by ensuring that review comments are created with formal links and semantics from the start. Our contributions include a novel model called Linkflows that allows for such detailed and semantically rich representations of reviews and the reviewing processes. We evaluate our approach on a manually curated dataset from several recent Computer Science journals and conferences that come with open peer reviews. We gathered ground-truth data by contacting the original reviewers and asking them to categorize their own review comments according to our model. Comparing this ground truth to answers provided by model experts, peers, and automated techniques confirms that our approach of formally capturing the reviewers intentions from the start prevents substantial discrepancies compared to when this information is later extracted from the plain-text comments. In general, our analysis shows that our model is well understood and easy to apply, and it revealed the semantic properties of such review comments.
Machine learning (ML) architectures such as convolutional neural networks (CNNs) have garnered considerable recent attention in the study of quantum many-body systems. However, advanced ML approaches such as transfer learning have seldom been applied to such contexts. Here we demonstrate that a simple recurrent unit (SRU) based efficient and transferable sequence learning framework is capable of learning and accurately predicting the time evolution of one-dimensional (1D) Ising model with simultaneous transverse and parallel magnetic fields, as quantitatively corroborated by relative entropy measurements and magnetization between the predicted and exact state distributions. At a cost of constant computational complexity, a larger many-body state evolution was predicted in an autoregressive way from just one initial state, without any guidance or knowledge of any Hamiltonian. Our work paves the way for future applications of advanced ML methods in quantum many-body dynamics only with knowledge from a smaller system.
The numerical emulation of quantum systems often requires an exponential number of degrees of freedom which translates to a computational bottleneck. Methods of machine learning have been used in adjacent fields for effective feature extraction and dimensionality reduction of high-dimensional datasets. Recent studies have revealed that neural networks are further suitable for the determination of macroscopic phases of matter and associated phase transitions as well as efficient quantum state representation. In this work, we address quantum phase transitions in quantum spin chains, namely the transverse field Ising chain and the anisotropic XY chain, and show that even neural networks with no hidden layers can be effectively trained to distinguish between magnetically ordered and disordered phases. Our neural network acts to predict the corresponding crossovers finite-size systems undergo. Our results extend to a wide class of interacting quantum many-body systems and illustrate the wide applicability of neural networks to many-body quantum physics.
Non-textual components such as charts, diagrams and tables provide key information in many scientific documents, but the lack of large labeled datasets has impeded the development of data-driven methods for scientific figure extraction. In this paper, we induce high-quality training labels for the task of figure extraction in a large number of scientific documents, with no human intervention. To accomplish this we leverage the auxiliary data provided in two large web collections of scientific documents (arXiv and PubMed) to locate figures and their associated captions in the rasterized PDF. We share the resulting dataset of over 5.5 million induced labels---4,000 times larger than the previous largest figure extraction dataset---with an average precision of 96.8%, to enable the development of modern data-driven methods for this task. We use this dataset to train a deep neural network for end-to-end figure detection, yielding a model that can be more easily extended to new domains compared to previous work. The model was successfully deployed in Semantic Scholar, a large-scale academic search engine, and used to extract figures in 13 million scientific documents.
106 - Le Yu , Leilei Sun , Bowen Du 2020
Given a sequence of sets, where each set contains an arbitrary number of elements, the problem of temporal sets prediction aims to predict the elements in the subsequent set. In practice, temporal sets prediction is much more complex than predictive modelling of temporal events and time series, and is still an open problem. Many possible existing methods, if adapted for the problem of temporal sets prediction, usually follow a two-step strategy by first projecting temporal sets into latent representations and then learning a predictive model with the latent representations. The two-step approach often leads to information loss and unsatisfactory prediction performance. In this paper, we propose an integrated solution based on the deep neural networks for temporal sets prediction. A unique perspective of our approach is to learn element relationship by constructing set-level co-occurrence graph and then perform graph convolutions on the dynamic relationship graphs. Moreover, we design an attention-based module to adaptively learn the temporal dependency of elements and sets. Finally, we provide a gated updating mechanism to find the hidden shared patterns in different sequences and fuse both static and dynamic information to improve the prediction performance. Experiments on real-world data sets demonstrate that our approach can achieve competitive performances even with a portion of the training data and can outperform existing methods with a significant margin.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا