Do you want to publish a course? Click here

A new approach to forecast service parts demand by integrating user preferences into multi-objective optimization

51   0   0.0 ( 0 )
 Added by Wenli Ouyang
 Publication date 2019
and research's language is English
 Authors Wenli Ouyang




Ask ChatGPT about the research

Service supply chain management is to prepare spare parts for failed products under warranty. Their goal is to reach agreed service level at the minimum cost. We convert this business problem into a preference based multi-objective optimization problem, where two quality criteria must be simultaneously optimized. One criterion is accuracy of demand forecast and the other is service level. Here we propose a general framework supporting solving preference-based multi-objective optimization problems (MOPs) by multi-gradient descent algorithm (MGDA), which is well suited for training deep neural network. The proposed framework treats agreed service level as a constrained criterion that must be met and generate a Pareto-optimal solution with highest forecasting accuracy. The neural networks used here are two Encoder-Decoder LSTM modes: one is used for pre-training phase to learn distributed representation of former generations service parts consumption data, and the other is used for supervised learning phase to generate forecast quantities of current generations service parts. Evaluated under the service parts consumption data in Lenovo Group Ltd, the proposed method clearly outperform baseline methods.



rate research

Read More

Multi-objective controller synthesis concerns the problem of computing an optimal controller subject to multiple (possibly conflicting) objective properties. The relative importance of objectives is often specified by human decision-makers. However, there is inherent uncertainty in human preferences (e.g., due to different preference elicitation methods). In this paper, we formalize the notion of uncertain human preferences and present a novel approach that accounts for uncertain human preferences in the multi-objective controller synthesis for Markov decision processes (MDPs). Our approach is based on mixed-integer linear programming (MILP) and synthesizes a sound, optimally permissive multi-strategy with respect to a multi-objective property and an uncertain set of human preferences. Experimental results on a range of large case studies show that our MILP-based approach is feasible and scalable to synthesize sound, optimally permissive multi-strategies with varying MDP model sizes and uncertainty levels of human preferences. Evaluation via an online user study also demonstrates the quality and benefits of synthesized (multi-)strategies.
We study the novel problem of blackbox optimization of multiple objectives via multi-fidelity function evaluations that vary in the amount of resources consumed and their accuracy. The overall goal is to approximate the true Pareto set of solutions by minimizing the resources consumed for function evaluations. For example, in power system design optimization, we need to find designs that trade-off cost, size, efficiency, and thermal tolerance using multi-fidelity simulators for design evaluations. In this paper, we propose a novel approach referred as Multi-Fidelity Output Space Entropy Search for Multi-objective Optimization (MF-OSEMO) to solve this problem. The key idea is to select the sequence of candidate input and fidelity-vector pairs that maximize the information gained about the true Pareto front per unit resource cost. Our experiments on several synthetic and real-world benchmark problems show that MF-OSEMO, with both approximations, significantly improves over the state-of-the-art single-fidelity algorithms for multi-objective optimization.
The content ranking problem in a social news website, is typically a function that maximizes a scalar metric of interest like dwell-time. However, like in most real-world applications we are interested in more than one metric---for instance simultaneously maximizing click-through rate, monetization metrics, dwell-time---and also satisfy the traffic requirements promised to different publishers. All this needs to be done on online data and under the settings where the objective function and the constraints can dynamically change; this could happen if for instance new publishers are added, some contracts are adjusted, or if some contracts are over. In this paper, we formulate this problem as a constrained, dynamic, multi-objective optimization problem. We propose a novel framework that extends a successful genetic optimization algorithm, NSGA-II, to solve this online, data-driven problem. We design the modules of NSGA-II to suit our problem. We evaluate optimization performance using Hypervolume and introduce a confidence interval metric for assessing the practicality of a solution. We demonstrate the application of this framework on a real-world Article Ranking problem. We observe that we make considerable improvements in both time and performance over a brute-force baseline technique that is currently in production.
Ion Beam Analysis (IBA) comprises a set of analytical techniques suited for material analysis, many of which are rather closely related. Self-consistent analysis of several IBA techniques takes advantage of this close relationship to combine different Ion Beam measurements in a unique model to obtain an improved characterization of the sample. This approach provides a powerful tool to obtain an unequivocal and reliable model of the sample, increasing confidence and reducing ambiguities. Taking advantage of the recognized reliability and quality of the simulations provided by SIMNRA, we developed a multi-process program for a self-consistent analysis based on SIMNRA calculations. MultiSIMNRA uses computational algorithms to minimize an objective function running multiple instances of SIMNRA. With four different optimization algorithms, the code can handle sample and setup parameters (including correlations and constraints), to find the set of parameters that best fits simultaneously all experimental data.
Dynamic Multi-objective Optimization Problems (DMOPs) refer to optimization problems that objective functions will change with time. Solving DMOPs implies that the Pareto Optimal Set (POS) at different moments can be accurately found, and this is a very difficult job due to the dynamics of the optimization problems. The POS that have been obtained in the past can help us to find the POS of the next time more quickly and accurately. Therefore, in this paper we present a Support Vector Machine (SVM) based Dynamic Multi-Objective Evolutionary optimization Algorithm, called SVM-DMOEA. The algorithm uses the POS that has been obtained to train a SVM and then take the trained SVM to classify the solutions of the dynamic optimization problem at the next moment, and thus it is able to generate an initial population which consists of different individuals recognized by the trained SVM. The initial populuation can be fed into any population based optimization algorithm, e.g., the Nondominated Sorting Genetic Algorithm II (NSGA-II), to get the POS at that moment. The experimental results show the validity of our proposed approach.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا