No Arabic abstract
Sequential Multiple Assignment Randomized Trials (SMARTs) are considered the gold standard for estimation and evaluation of treatment regimes. SMARTs are typically sized to ensure sufficient power for a simple comparison, e.g., the comparison of two fixed treatment sequences. Estimation of an optimal treatment regime is conducted as part of a secondary and hypothesis-generating analysis with formal evaluation of the estimated optimal regime deferred to a follow-up trial. However, running a follow-up trial to evaluate an estimated optimal treatment regime is costly and time-consuming; furthermore, the estimated optimal regime that is to be evaluated in such a follow-up trial may be far from optimal if the original trial was underpowered for estimation of an optimal regime. We derive sample size procedures for a SMART that ensure: (i) sufficient power for comparing the optimal treatment regime with standard of care; and (ii) the estimated optimal regime is within a given tolerance of the true optimal regime with high-probability. We establish asymptotic validity of the proposed procedures and demonstrate their finite sample performance in a series of simulation experiments.
In the management of most chronic conditions characterized by the lack of universally effective treatments, adaptive treatment strategies (ATSs) have been growing in popularity as they offer a more individualized approach, and sequential multiple assignment randomized trials (SMARTs) have gained attention as the most suitable clinical trial design to formalize the study of these strategies. While the number of SMARTs has increased in recent years, their design has remained limited to the frequentist setting, which may not fully or appropriately account for uncertainty in design parameters and hence not yield appropriate sample size recommendations. Specifically, standard frequentist formulae rely on several assumptions that can be easily misspecified. The Bayesian framework offers a straightforward path to alleviate some of these concerns. In this paper, we provide calculations in a Bayesian setting to allow more realistic and robust estimates that account for uncertainty in inputs through the `two priors approach. Additionally, compared to the standard formulae, this methodology allows us to rely on fewer assumptions, integrate pre-trial knowledge, and switch the focus from the standardized effect size to the minimal detectable difference. The proposed methodology is evaluated in a thorough simulation study and is implemented to estimate the sample size for a full-scale SMART of an Internet-Based Adaptive Stress Management intervention based on a pilot SMART conducted on cardiovascular disease patients from two Canadian provinces.
One of the main goals of sequential, multiple assignment, randomized trials (SMART) is to find the most efficacious design embedded dynamic treatment regimes. The analysis method known as multiple comparisons with the best (MCB) allows comparison between dynamic treatment regimes and identification of a set of optimal regimes in the frequentist setting for continuous outcomes, thereby, directly addressing the main goal of a SMART. In this paper, we develop a Bayesian generalization to MCB for SMARTs with binary outcomes. Furthermore, we show how to choose the sample size so that the inferior embedded DTRs are screened out with a specified power. We compare log-odds between different DTRs using their exact distribution without relying on asymptotic normality in either the analysis or the power calculation. We conduct extensive simulation studies under two SMART designs and illustrate our methods application to the Adaptive Treatment for Alcohol and Cocaine Dependence (ENGAGE) trial.
In many health domains such as substance-use, outcomes are often counts with an excessive number of zeros (EZ) - count data having zero counts at a rate significantly higher than that expected of a standard count distribution (e.g., Poisson). However, an important gap exists in sample size estimation methodology for planning sequential multiple assignment randomized trials (SMARTs) for comparing dynamic treatment regimens (DTRs) using longitudinal count data. DTRs, also known as treatment algorithms or adaptive interventions, mimic the individualized and evolving nature of patient care through the specification of decision rules guiding the type, timing and modality of delivery, and dosage of treatments to address the unique and changing needs of individuals. To close this gap, we develop a Monte Carlo-based approach to sample size estimation. A SMART for engaging alcohol and cocaine-dependent patients in treatment is used as motivation.
The development of a new diagnostic test ideally follows a sequence of stages which, amongst other aims, evaluate technical performance. This includes an analytical validity study, a diagnostic accuracy study and an interventional clinical utility study. Current approaches to the design and analysis of the diagnostic accuracy study can suffer from prohibitively large sample sizes and interval estimates with undesirable properties. In this paper, we propose a novel Bayesian approach which takes advantage of information available from the analytical validity stage. We utilise assurance to calculate the required sample size based on the target width of a posterior probability interval and can choose to use or disregard the data from the analytical validity study when subsequently inferring measures of test accuracy. Sensitivity analyses are performed to assess the robustness of the proposed sample size to the choice of prior, and prior-data conflict is evaluated by comparing the data to the prior predictive distributions. We illustrate the proposed approach using a motivating real-life application involving a diagnostic test for ventilator associated pneumonia. Finally, we compare the properties of the proposed approach against commonly used alternatives. The results show that by making better use of existing data from earlier studies, the assurance-based approach can not only reduce the required sample size when compared to alternatives, but can also produce more reliable sample sizes for diagnostic accuracy studies.
Manufacturers are required to demonstrate products meet reliability targets. A typical way to achieve this is with reliability demonstration tests (RDTs), in which a number of products are put on test and the test is passed if a target reliability is achieved. There are various methods for determining the sample size for RDTs, typically based on the power of a hypothesis test following the RDT or risk criteria. Bayesian risk criteria approaches can conflate the choice of sample size and the analysis to be undertaken once the test has been conducted and rely on the specification of somewhat artificial acceptable and rejectable reliability levels. In this paper we offer an alternative approach to sample size determination based on the idea of assurance. This approach chooses the sample size to answer provide a certain probability that the RDT will result in a successful outcome. It separates the design and analysis of the RDT, allowing different priors for each. We develop the assurance approach for sample size calculations in RDTs for binomial and Weibull likelihoods and propose appropriate prior distributions for the design and analysis of the test. In each case, we illustrate the approach with an example based on real data.