Do you want to publish a course? Click here

Effect of tungsten on vacancy behaviors in Ta-W alloys from first-principles

110   0   0.0 ( 0 )
 Added by Kaige Hu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Alloying elements play an important role in the design of plasma facing materials with good comprehensive properties. Based on first-principles calculations, the stability of alloying element W and its interaction with vacancy defects in Ta-W alloys are studied. The results show that W tends to distribute dispersedly in Ta lattice, and is not likely to form precipitation even with the coexistence of vacancy. The aggregation behaviors of W and vacancy can be affected by their concentration competition. The increase of W atoms has a negative effect on the vacancy clustering, as well as delays the vacancy nucleation process, which is favorable to the recovery of point defects. Our results are in consistent with the defect evolution observed in irradiation experiments in Ta-W alloys. Our calculations suggest that Ta is a potential repairing element that can be doped into Ta-based materials to improve their radiation resistance.



rate research

Read More

85 - Shulong Wen , Kaige Hu , Min Pan 2019
Transmutation elements are the essential products in plasma facing materials tungsten, and have further effects on point defects evolution resulted by radiation. Here, transmutation elements Re and Ta atoms have been selected to assess the effects on property of vacancy and vacancy cluster in W material via first-principles calculations. The formation energy indicates mono-vacancy is more likely to form in W-Re system than pure W and W-Ta system. Both Re and Ta have reduced the diffusion barrier energy in the mono-vacancy migration. The calculation presents that vacancy cluster prefers to grow up by combining another vacancy cluster relative to a single mono-vacancy. Re is favorable to the nucleation and growth of vacancies clusters, while Ta has a suppressive effect on the aggregation of small vacancy cluster. The emphasis analysis is obtained according the volumetric dependent strain. Vacancy dissociation calculations show that the dissociation of vacancy clusters is easier to begin with a single vacancy dissociation process.
We expand our study on cubic BiFeO$_3$ alloys presented in [K. Koumpouras and I. Galanakis, textit{J. Magn. Magn. Mater} 323, 2328 (2011)] to include also the BiMnO$_3$ and Bi$_2$MnFeO$_6$ alloys. For the latter we considered three different cases of distribution of the Fe-Mn atoms in the lattice and six possible magnetic configurations. We show that Fe and Mn atoms in all cases under study retain a large spin magnetic moment, the magnitude of which exceeds the 3 $mu_B$. Their electronic and magnetic properties are similar to the ones in the parent BiMnO$_3$ and BiFeO$_3$ compounds. Thus oxygen atoms which are the nearest-neighbors of Fe(Mn) atoms play a crucial role since they mediate the magnetic interactions between the transition metal atoms and screen any change in their environment. Finally, we study the effect of lattice contraction on the magnetic properties of Bi$_2$MnFeO$_6$.
Precipitation in Mg-Zn alloys was analyzed by means of first principles calculations. Formation energies of symmetrically distinct hcp Mg1-xZnx (0 < x < 1) configurations were determined and potential candidates for Guinier-Preston zones coherent with the matrix were identified from the convex hull. The most likely structures were ranked depending on the interface energy along the basal plane. In addition, the formation energy and vibrational entropic contributions of several phases reported experimentally (Mg4Zn7, MgZn2 cubic, MgZn2 hexagonal, Mg21Zn25 and Mg2Zn11) were calculated. The formation energies of Mg4Zn7, MgZn2 cubic, and MgZn2 hexagonal Laves phases were very close because they were formed by different arrangements of rhombohedral and hexagonal lattice units. It was concluded that beta_1^ precipitates were formed by a mixture of all of them. Nevertheless, the differences in the geometrical arrangements led to variations in the entropic energy contributions which determined the high temperature stability. It was found that the MgZn2 hexagonal Laves phase is the most stable phase at high temperature and, thus, beta_1^ precipitates tend to transform into the beta_2^ (MgZn2 hexagonal) precipitates with higher aging temperature or longer aging times. Finally, the equilibrium beta phase (Mg21Zn25) was found to be a long-range order that precipitates the last one on account of the kinetic processes necessary to trigger the transformation from a short-range order phase beta_2^ to beta .
195 - Joseph A. Yasi 2011
We develop a first-principles model of thermally-activated cross-slip in magnesium in the presence of a random solute distribution. Electronic structure methods provide data for the interaction of solutes with prismatic dislocation cores and basal dislocation cores. Direct calculations of interaction energies are possible for solutes---K, Na, and Sc---that lower the Mg prismatic stacking fault energy to improve formability. To connect to thermally activated cross-slip, we build a statistical model for the distribution of activation energies for double kink nucleation, barriers for kink migration, and roughness of the energy landscape to be overcome by an athermal stress. These distributions are calculated numerically for a range of concentrations, as well as alternate approximate analytic expressions for the dilute limit. The analytic distributions provide a simplified model for the maximum cross-slip softening for a solute as a function of temperature. The direct interaction calculations predict lowered forming temperatures for Mg-0.7at.%Sc, Mg-0.4at.%K, and Mg-0.6at.%Na of approximately 250C.
We provide a systematic analysis of finite-temperature magnetic properties of random alloys Fe$_x$Ni$_{1-x}$ with the face-centered cubic structure over a broad concentration range $x$. By means of spin-polarized relativistic Korringa-Kohn-Rostoker method we calculate the electronic structure of disordered iron-nickel alloys and discuss how a composition change affects magnetic moments of Fe and Ni and the density of states. We investigate how the Curie temperature depends on Fe concentration using conventional approaches, such as mean-field approximation or Monte Carlo simulations, and dynamic spin-fluctuation theory that has not been used in this context so far. Being devised to account spin fluctuations explicitly, the latter method shows the best fit to experimental results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا