Do you want to publish a course? Click here

Novel signatures of dark matter in laser-interferometric gravitational-wave detectors

104   0   0.0 ( 0 )
 Added by Yevgeny Stadnik
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dark matter may induce apparent temporal variations in the physical constants, including the electromagnetic fine-structure constant and fermion masses. In particular, a coherently oscillating classical dark-matter field may induce apparent oscillations of physical constants in time, while the passage of macroscopic dark-matter objects (such as topological defects) may induce apparent transient variations in the physical constants. In this paper, we point out several new signatures of the aforementioned types of dark matter that can arise due to the geometric asymmetry created by the beam-splitter in a two-arm laser interferometer. These new signatures include dark-matter-induced time-varying size changes of a freely-suspended beam-splitter and associated time-varying shifts of the main reflecting surface of the beam-splitter that splits and recombines the laser beam, as well as time-varying refractive-index changes in the freely-suspended beam-splitter and time-varying size changes of freely-suspended arm mirrors. We demonstrate that existing ground-based experiments already have sufficient sensitivity to probe extensive regions of unconstrained parameter space in models involving oscillating scalar dark-matter fields and domain walls composed of scalar fields. In the case of oscillating dark-matter fields, Michelson interferometers $-$ in particular, the GEO600 detector $-$ are especially sensitive. The sensitivity of Fabry-Perot-Michelson interferometers, including LIGO, VIRGO and KAGRA, to oscillating dark-matter fields can be significantly increased by making the thicknesses of the freely-suspended Fabry-Perot arm mirrors different in the two arms. We also discuss how small-scale Michelson interferometers, such as the Fermilab holometer, could be used to perform resonant narrowband searches for oscillating dark-matter fields with enhanced sensitivity to dark matter.



rate research

Read More

Gravitational wave astronomy has recently emerged as a new way to study our Universe. In this work, we survey the potential of gravitational wave interferometers to detect macroscopic astrophysical objects comprising the dark matter. Starting from the well-known case of clumps we expand to cosmic strings and domain walls. We also consider the sensitivity to measure the dark matter power spectrum on small scales. Our analysis is based on the fact that these objects, when traversing the vicinity of the detector, will exert a gravitational pull on each node of the interferometer, in turn leading to a differential acceleration and corresponding Doppler signal, that can be measured. As a prototypical example of a gravitational wave interferometer, we consider signals induced at LISA. We further extrapolate our results to gravitational wave experiments sensitive in other frequency bands, including ground-based interferometers, such as LIGO, and pulsar timing arrays, such as SKA. Assuming moderate sensitivity improvements beyond the current designs, clumps, strings and domain walls may be within reach of these experiments.
This paper reviews some of the key enabling technologies for advanced and future laser interferometer gravitational wave detectors, which must combine test masses with the lowest possible optical and acoustic losses, with high stability lasers and various techniques for suppressing noise. Sect. 1 of this paper presents a review of the acoustic properties of test masses. Sect. 2 reviews the technology of the amorphous dielectric coatings which are currently universally used for the mirrors in advanced laser interferometers, but for which lower acoustic loss would be very advantageous. In sect. 3 a new generation of crystalline optical coatings that offer a substantial reduction in thermal noise is reviewed. The optical properties of test masses are reviewed in sect. 4, with special focus on the properties of silicon, an important candidate material for future detectors. Sect. 5 of this paper presents the very low noise, high stability laser technology that underpins all advanced and next generation laser interferometers.
Future ground-based gravitational-wave detectors are slated to detect black hole and neutron star collisions from the entire stellar history of the universe. To achieve the designed detector sensitivities, frequency noise from the laser source must be reduced below the level achieved in current Advanced LIGO detectors. This paper reviews the laser frequency noise suppression scheme in Advanced LIGO, and quantifies the noise coupling to the gravitational-wave readout. The laser frequency noise incident on the current Advanced LIGO detectors is $8 times 10^{-5}~mathrm{Hz/sqrt{Hz}}$ at $1~mathrm{kHz}$. Future detectors will require even lower incident frequency noise levels to ensure this technical noise source does not limit sensitivity. The frequency noise requirement for a gravitational wave detector with arm lengths of $40~mathrm{km}$ is estimated to be $7 times 10^{-7}~mathrm{Hz/sqrt{Hz}}$. To reach this goal a new frequency noise suppression scheme is proposed, utilizing two input mode cleaner cavities, and the limits of this scheme are explored. Using this scheme the frequency noise requirement is met, even in pessimistic noise coupling scenarios.
Quantum fluctuations in the phase and amplitude quadratures of light set limitations on the sensitivity of modern optical instruments. The sensitivity of the interferometric gravitational wave detectors, such as the Advanced Laser Interferometer Gravitational wave Observatory (LIGO), is limited by quantum shot noise, quantum radiation pressure noise, and a set of classical noises. We show how the quantum properties of light can be used to distinguish these noises using correlation techniques. Particularly, in the first part of the paper we show estimations of the coating thermal noise and gas phase noise, hidden below the quantum shot noise in the Advanced LIGO sensitivity curve. We also make projections on the observatory sensitivity during the next science runs. In the second part of the paper we discuss the correlation technique that reveals the quantum radiation pressure noise from the background of classical noises and shot noise. We apply this technique to the Advanced LIGO data, collected during the first science run, and experimentally estimate the quantum correlations and quantum radiation pressure noise in the interferometer for the first time.
We show that gravitational wave detectors based on a type of atom interferometry are sensitive to ultralight scalar dark matter. Such dark matter can cause temporal oscillations in fundamental constants with a frequency set by the dark matter mass, and amplitude determined by the local dark matter density. The result is a modulation of atomic transition energies. This signal is ideally suited to a type of gravitational wave detector that compares two spatially separated atom interferometers referenced by a common laser. Such a detector can improve on current searches for electron-mass or electric-charge modulus dark matter by up to 10 orders of magnitude in coupling, in a frequency band complementary to that of other proposals. It demonstrates that this class of atomic sensors is qualitatively different from other gravitational wave detectors, including those based on laser interferometry. By using atomic-clock-like interferometers, laser noise is mitigated with only a single baseline. These atomic sensors can thus detect scalar signals in addition to tensor signals.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا