Do you want to publish a course? Click here

JILA SrI Optical Lattice Clock with Uncertainty of $2.0 times 10^{-18}$

135   0   0.0 ( 0 )
 Added by Colin Kennedy
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on an improved systematic evaluation of the JILA SrI optical lattice clock, achieving a nearly identical systematic uncertainty compared to the previous strontium accuracy record set by the JILA SrII optical lattice clock (OLC) at $2.1 times 10^{-18}$. This improves upon the previous evaluation of the JILA SrI optical lattice clock in 2013, and we achieve a more than twenty-fold reduction in systematic uncertainty to $2.0 times 10^{-18}$. A seven-fold improvement in clock stability, reaching $4.8 times 10^{-17}/sqrt{tau}$ for an averaging time $tau$ in seconds, allows the clock to average to its systematic uncertainty in under 10 minutes. We improve the systematic uncertainty budget in several important ways. This includes a novel scheme for taming blackbody radiation-induced frequency shifts through active stabilization and characterization of the thermal environment, inclusion of higher-order terms in the lattice light shift, and updated atomic coefficients. Along with careful control of other systematic effects, we achieve low temporal drift of systematic offsets and high uptime of the clock. We additionally present an improved evaluation of the second order Zeeman coefficient that is applicable to all Sr optical lattice clocks. These improvements in performance have enabled several important studies including frequency ratio measurements through the Boulder Area Clock Optical Network (BACON), a high precision comparison with the JILA 3D lattice clock, a demonstration of a new all-optical time scale combining SrI and a cryogenic silicon cavity, and a high sensitivity search for ultralight scalar dark matter.



rate research

Read More

The Stark shift due to blackbody radiation (BBR) is the key factor limiting the performance of many atomic frequency standards, with the BBR environment inside the clock apparatus being difficult to characterize at a high level of precision. Here we demonstrate an in-vacuum radiation shield that furnishes a uniform, well-characterized BBR environment for the atoms in an ytterbium optical lattice clock. Operated at room temperature, this shield enables specification of the BBR environment to a corresponding fractional clock uncertainty contribution of $5.5 times 10^{-19}$. Combined with uncertainty in the atomic response, the total uncertainty of the BBR Stark shift is now $1times10^{-18}$. Further operation of the shield at elevated temperatures enables a direct measure of the BBR shift temperature dependence and demonstrates consistency between our evaluated BBR environment and the expected atomic response.
We present a measurement of the absolute frequency of the 5s$^2$ $^1$S$_0$ to 5s5p $^3$P$_0$ transition in $^{87}$Sr, which is a secondary representation of the SI second. We describe the optical lattice clock apparatus used for the measurement, and we focus in detail on how its systematic frequency shifts are evaluated with a total fractional uncertainty of $1 times 10^{-17}$. Traceability to the International System of Units is provided via comparison to International Atomic Time (TAI). Gathering data over 5- and 15-day periods, with the lattice clock operating on average 74$%$ of the time, we measure the frequency of the transition to be 429228004229873.1(5) Hz, which corresponds to a fractional uncertainty of $1 times 10^{-15}$. We describe in detail how this uncertainty arises from the intermediate steps linking the optical frequency standard, through our local time scale UTC(NPL), to an ensemble of primary and secondary frequency standards which steer TAI. The calculated absolute frequency of the transition is in good agreement with recent measurements carried out in other laboratories around the world.
Atomic clocks have been transformational in science and technology, leading to innovations such as global positioning, advanced communications, and tests of fundamental constant variation. Next-generation optical atomic clocks can extend the capability of these timekeepers, where researchers have long aspired toward measurement precision at 1 part in $bm{10^{18}}$. This milestone will enable a second revolution of new timing applications such as relativistic geodesy, enhanced Earth- and space-based navigation and telescopy, and new tests on physics beyond the Standard Model. Here, we describe the development and operation of two optical lattice clocks, both utilizing spin-polarized, ultracold atomic ytterbium. A measurement comparing these systems demonstrates an unprecedented atomic clock instability of $bm{1.6times 10^{-18}}$ after only $bm{7}$ hours of averaging.
There has been tremendous progress in the performance of optical frequency standards since the first proposals to carry out precision spectroscopy on trapped, single ions in the 1970s. The estimated fractional frequency uncertainty of todays leading optical standards is currently in the $10^{-18}$ range, approximately two orders of magnitude better than that of the best caesium primary frequency standards. This exceptional accuracy and stability is resulting in a growing number of research groups developing optical clocks. While good review papers covering the topic already exist, more practical guidelines are needed as a complement. The purpose of this document is therefore to provide technical guidance for researchers starting in the field of optical clocks. The target audience includes national metrology institutes (NMIs) wanting to set up optical clocks (or subsystems thereof) and PhD students and postdocs entering the field. Another potential audience is academic groups with experience in atomic physics and atom or ion trapping, but with less experience of time and frequency metrology and optical clock requirements. These guidelines have arisen from the scope of the EMPIR project Optical clocks with $1 times 10^{-18}$ uncertainty (OC18). Therefore, the examples are from European laboratories even though similar work is carried out all over the world. The goal of OC18 was to push the development of optical clocks by improving each of the necessary subsystems: ultrastable lasers, neutral-atom and single-ion traps, and interrogation techniques. This document shares the knowledge acquired by the OC18 project consortium and gives practical guidance on each of these aspects.
Improvements in atom-light coherence are foundational to progress in quantum information science, quantum optics, and precision metrology. Optical atomic clocks require local oscillators with exceptional optical coherence due to the challenge of performing spectroscopy on their ultra-narrow linewidth clock transitions. Advances in laser stabilization have thus enabled rapid progress in clock precision. A new class of ultrastable lasers based on cryogenic silicon reference cavities has recently demonstrated the longest optical coherence times to date. In this work we utilize such a local oscillator, along with a state-of-the-art frequency comb for coherence transfer, with two Sr optical lattice clocks to achieve an unprecedented level of clock stability. Through an anti-synchronous comparison, the fractional instability of both clocks is assessed to be $4.8times 10^{-17}/sqrt{tau}$ for an averaging time $tau$ in seconds. Synchronous interrogation reveals a quantum projection noise dominated instability of $3.5(2)times10^{-17}/sqrt{tau}$, resulting in a precision of $5.8(3)times 10^{-19}$ after a single hour of averaging. The ability to measure sub-$10^{-18}$ level frequency shifts in such short timescales will impact a wide range of applications for clocks in quantum sensing and fundamental physics. For example, this precision allows one to resolve the gravitational red shift from a 1 cm elevation change in only 20 minutes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا