Do you want to publish a course? Click here

A Finite-Length Construction of Irregular Spatially-Coupled Codes

67   0   0.0 ( 0 )
 Added by Homa Esfahanizadeh
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Spatially-coupled (SC) LDPC codes have recently emerged as an excellent choice for error correction in modern data storage and communication systems due to their outstanding performance. It has long been known that irregular graph codes offer performance advantage over their regular counterparts. In this paper, we present a novel combinatorial framework for designing finite-length irregular SC LDPC codes. Our irregular SC codes have the desirable properties of regular SC codes thanks to their structure while offering significant performance benefits that come with the node degree irregularity. Coding constructions proposed in this work contribute to the existing portfolio of finite-length graph code designs.



rate research

Read More

Spatially-coupled (SC) codes are a family of graph-based codes that have attracted significant attention thanks to their capacity approaching performance and low decoding latency. An SC code is constructed by partitioning an underlying block code into a number of components and coupling their copies together. In this paper, we first introduce a general approach for the enumeration of detrimental combinatorial objects in the graph of finite-length SC codes. Our approach is general in the sense that it effectively works for SC codes with various column weights and memories. Next, we present a two-stage framework for the construction of high-performance binary SC codes optimized for additive white Gaussian noise channel; we aim at minimizing the number of detrimental combinatorial objects in the error floor regime. In the first stage, we deploy a novel partitioning scheme, called the optimal overlap partitioning, to produce optimal partitioning corresponding to the smallest number of detrimental objects. In the second stage, we apply a new circulant power optimizer to further reduce the number of detrimental objects in the lifted graph. An SC code constructed by our new framework has nearly 5 orders of magnitudes error floor performance improvement compared to the uncoupled setting.
Generalized low-density parity-check (GLDPC) codes are a class of LDPC codes in which the standard single parity check (SPC) constraints are replaced by constraints defined by a linear block code. These stronger constraints typically result in improved error floor performance, due to better minimum distance and trapping set properties, at a cost of some increased decoding complexity. In this paper, we study spatially coupled generalized low-density parity-check (SC-GLDPC) codes and present a comprehensive analysis of these codes, including: (1) an iterative decoding threshold analysis of SC-GLDPC code ensembles demonstrating capacity approaching thresholds via the threshold saturation effect; (2) an asymptotic analysis of the minimum distance and free distance properties of SC-GLDPC code ensembles, demonstrating that the ensembles are asymptotically good; and (3) an analysis of the finite-length scaling behavior of both GLDPC block codes and SC-GLDPC codes based on a peeling decoder (PD) operating on a binary erasure channel (BEC). Results are compared to GLDPC block codes, and the advantages and disadvantages of SC-GLDPC codes are discussed.
SC-LDPC codes with sub-block locality can be decoded locally at the level of sub-blocks that are much smaller than the full code block, thus providing fast access to the coded information. The same code can also be decoded globally using the entire code block, for increased data reliability. In this paper, we pursue the analysis and design of such codes from both finite-length and asymptotic lenses. This mixed approach has rarely been applied in designing SC codes, but it is beneficial for optimizing code graphs for local and global performance simultaneously. Our proposed framework consists of two steps: 1) designing the local code for both threshold and cycle counts, and 2) designing the coupling of local codes for best cycle count in the global design.
Linear nested codes, where two or more sub-codes are nested in a global code, have been proposed as candidates for reliable multi-terminal communication. In this paper, we consider nested array-based spatially coupled low-density parity-check (SC-LDPC) codes and propose a line-counting based optimization scheme for minimizing the number of dominant absorbing sets in order to improve its performance in the high signal-to-noise ratio regime. Since the parity-check matrices of different nested sub-codes partially overlap, the optimization of one nested sub-code imposes constraints on the optimization of the other sub-codes. To tackle these constraints, a multi-step optimization process is applied first to one of the nested codes, then sequential optimization of the remaining nested codes is carried out based on the constraints imposed by the previously optimized sub-codes. Results show that the order of optimization has a significant impact on the number of dominant absorbing sets in the Tanner graph of the code, resulting in a tradeoff between the performance of a nested code structure and its optimization sequence: the code which is optimized without constraints has fewer harmful structures than the code which is optimized with constraints. We also show that for certain code parameters, dominant absorbing sets in the Tanner graphs of all nested codes are completely removed using our proposed optimization strategy.
In this paper, we construct four families of linear codes over finite fields from the complements of either the union of subfields or the union of cosets of a subfield, which can produce infinite families of optimal linear codes, including infinite families of (near) Griesmer codes. We also characterize the optimality of these four families of linear codes with an explicit computable criterion using the Griesmer bound and obtain many distance-optimal linear codes. In addition, we obtain several classes of distance-optimal linear codes with few weights and completely determine their weight distributions. It is shown that most of our linear codes are self-orthogonal or minimal which are useful in applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا