Do you want to publish a course? Click here

Revisiting constraints on asteroid-mass primordial black holes as dark matter candidates

62   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

As the only dark matter candidate that does not invoke a new particle that survives to the present day, primordial black holes (PBHs) have drawn increasing attention recently. Up to now, various observations have strongly constrained most of the mass range for PBHs, leaving only small windows where PBHs could make up a substantial fraction of the dark matter. Here we revisit the PBH constraints for the asteroid-mass window, i.e., the mass range $3.5times 10^{-17}M_odot < m_{mathrm{PBH}} < 4times 10^{-12}M_odot$. We revisit 3 categories of constraints. (1) For optical microlensing, we analyze the finite source size and diffractive effects and discuss the scaling relations between the event rate, $m_{mathrm{PBH}}$ and the event duration. We argue that it will be difficult to push the existing optical microlensing constraints to much lower m$_{mathrm{PBH}}$. (2) For dynamical capture of PBHs in stars, we derive a general result on the capture rate based on phase space arguments. We argue that survival of stars does not constrain PBHs, but that disruption of stars by captured PBHs should occur and that the asteroid-mass PBH hypothesis could be constrained if we can work out the observational signature of this process. (3) For destruction of white dwarfs by PBHs that pass through the white dwarf without getting gravitationally captured, but which produce a shock that ignites carbon fusion, we perform a 1+1D hydrodynamic simulation to explore the post-shock temperature and relevant timescales, and again we find this constraint to be ineffective. In summary, we find that the asteroid-mass window remains open for PBHs to account for all the dark matter.



rate research

Read More

The renewed interest in the possibility that primordial black holes (PBHs) may constitute a significant part of the dark matter has motivated revisiting old observational constraints, as well as developing new ones. We present new limits on the PBH abundance, from a comprehensive analysis of high-resolution, high-redshift Lyman-$alpha$ forest data. Poisson fluctuations in the PBH number density induce a small-scale power enhancement which departs from the standard cold dark matter prediction. Using a grid of hydrodynamic simulations exploring different values of astrophysical parameters, {we obtain a marginalized upper limit on the PBH mass of $f_{rm PBH}M_{rm PBH} sim 60~M_{odot}$ at $2sigma$, when a Gaussian prior on the reionization redshift is imposed, preventing its posterior distribution to peak on very high values, which are disfavoured by the most recent estimates obtained both through Cosmic Microwave Background and Inter-Galactic Medium observations. Such bound weakens to $f_{rm PBH}M_{rm PBH} sim 170~M_{odot}$, when a conservative flat prior is instead assumed. Both limits significantly improves previous constraints from the same physical observable.} We also extend our predictions to non-monochromatic PBH mass distributions, ruling out large regions of the parameter space for some of the most viable PBH extended mass functions.
163 - Ranjan Laha , Julian B. Mu~noz , 2020
The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) satellite has yielded unprecedented measurements of the soft gamma-ray spectrum of our Galaxy. Here we use those measurements to set constraints on dark matter (DM) that decays or annihilates into photons with energies $Eapprox 0.02-2$ MeV. First, we revisit the constraints on particle DM that decays or annihilates to photon pairs. In particular, for decaying DM, we find that previous limits were overstated by roughly an order of magnitude. Our new, conservative analysis finds that the DM lifetime must satisfy $taugtrsim 5times 10^{26},{rm s}times (m_{chi}/rm MeV)^{-1}$ for DM masses $m_{chi}=0.054-3.6$ MeV. For MeV-scale DM that annihilates into photons INTEGRAL sets the strongest constraints to date. Second, we target ultralight primordial black holes (PBHs) through their Hawking radiation. This makes them appear as decaying DM with a photon spectrum peaking at $Eapprox 5.77/(8pi G M_{rm PBH})$, for a PBH of mass $M_{rm PBH}$. We use the INTEGRAL data to demonstrate that, at 95% C.L., PBHs with masses less than $1.2times 10^{17}$ g cannot comprise all of the DM, setting the tightest bound to date on ultralight PBHs.
Although the dark matter is usually assumed to be some form of elementary particle, primordial black holes (PBHs) could also provide some of it. However, various constraints restrict the possible mass windows to $10^{16}$ - $10^{17},$g, $10^{20}$ - $10^{24},$g and $10$ - $10^{3},M_{odot}$. The last possibility is contentious but of special interest in view of the recent detection of black-hole mergers by LIGO/Virgo. PBHs might have important consequences and resolve various cosmological conundra even if they have only a small fraction of the dark-matter density. In particular, those larger than $10^{3},M_{odot}$ could generate cosmological structures through the seed or Poisson effect, thereby alleviating some problems associated with the standard cold dark-matter scenario, and sufficiently large PBHs might provide seeds for the supermassive black holes in galactic nuclei. More exotically, the Planck-mass relics of PBH evaporations or stupendously large black holes bigger than $10^{12},M_{odot}$ could provide an interesting dark component.
The LIGO discoveries have rekindled suggestions that primordial black holes (BHs) may constitute part to all of the dark matter (DM) in the Universe. Such suggestions came from 1) the observed merger rate of the BHs, 2) their unusual masses, 3) their low/zero spins, and 4) also from the independently uncovered cosmic infrared background (CIB) fluctuations signal of high amplitude and coherence with unresolved cosmic X-ray background (CXB). Here we summarize the prospects to resolve this important issue with electromagnetic observations using the instruments and tools expected in the 2020s. These prospects appear promising to make significant, and potentially critical, advances. We demonstrate that in the next decade, new space- and ground-borne electromagnetic instruments, combined with concurrent theoretical efforts, should shed critical light on the long-considered link between primordial BHs and DM. Specifically the new data and methodologies under this program will involve: I) Probing with high precision the spatial spectrum of source-subtracted CIB with Euclid and WFIRST, and its coherence with unresolved cosmic X-ray background using eROSITA and Athena, II) Advanced searches for microlensing of Galactic stars by the intervening Galactic Halo BHs with OGLE, Gaia, LSST and WFIRST, III) Supernovae (SNe) lensing in the upcoming surveys with WFIRST, LSST and also potentially with Euclid and JWST, IV) Advanced theoretical work to understand the details of PBH accretion and evolution and their influence on cosmic microwave background (CMB) anisotropies in light of the next generation CMB experiments, V) Better new samples and theoretical understanding involving stability and properties of ultra faint dwarf galaxies, pulsar timing, and cosmological quasar lensing.
We study the dynamics of a spectator Higgs field which stochastically evolves during inflation onto near-critical trajectories on the edge of a runaway instability. We show that its fluctuations do not produce primordial black holes (PBHs) in sufficient abundance to be the dark matter, nor do they produce significant second-order gravitational waves. First we show that the Higgs produces larger fluctuations on CMB scales than on PBH scales, itself a no-go for a viable PBH scenario. Then we track the superhorizon perturbations nonlinearly through reheating using the delta N formalism to show that they are not converted to large curvature fluctuations. Our conclusions hold regardless of any fine-tuning of the Higgs field for both the Standard Model Higgs and for Higgs potentials modified to prevent unbounded runaway.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا