Control of quantum memory assisted entropic uncertainty lower bound for topological qubits in open quantum system through environment


Abstract in English

The uncertainty principle is one of the most important issues that clarify the distinction between classical and quantum theory. This principle sets a bound on our ability to predict the measurement outcome of two incompatible observables precisely. Uncertainty principle can be formulated via Shannon entropies of the probability distributions of measurement outcome of the two observables. It has shown that the entopic uncertainty bound can be improved by considering an additional particle as the quantum memory $B$ which has correlation with the measured particle $A$. In this work we consider the memory assisted entropic uncertainty for the case in which the quantum memory and measured particle are topological qubits. In our scenario the topological quantum memory $B$, is considered as an open quantum system which interacts with its surrounding. The motivation for this model is associated with the fact that the basis of the memory-assisted entropic uncertainty relation is constructed on the correlation between quantum memory $B$ and measured particle $A$. In the sense that, Bob who holds the quantum memory $B$ can predict Alices measurement results on particle $A$ more accurately, when the amount of correlation between $A$ and $B$ is great. Here, we want to find the influence of environmental effects on uncertainty bound while the quantum memory interacts with its surrounding. In this work we will consider Ohmic-like Fermionic and Bosonic environment. We have also investigate the effect of the Fermionic and Bosonic environment on the lower bounds of the amount of the key that can be extracted per state by Alice and Bob for quantum key distribution protocols.

Download