Relating microswimmer synthesis to rheotactic tunability


Abstract in English

We explore the behavior of micron-scale autophoretic Janus (Au/Pt) rods, having various Au/Pt length ratios, swimming near a wall in an imposed background flow. We find that their ability to robustly orient and move upstream, i.e. to rheotax, depends strongly on the Au/Pt ratio, which is easily tunable in synthesis. Numerical simulations of swimming rods actuated by a surface slip show a similar rheotactic tunability when varying the location of the surface slip versus surface drag. Slip location determines whether swimmers are Pushers (rear-actuated), Pullers (front-actuated), or in between. Our simulations and modeling show that Pullers rheotax most robustly due to their larger tilt angle to the wall, which makes them responsive to flow gradients. Thus, rheotactic response infers the nature of difficult to measure flow-fields of an active particle, establishes its dependence on swimmer type, and shows how Janus rods can be tuned for flow responsiveness. We demonstrate the effectiveness of a simple geometric sieve for rheotactic ability.

Download