The XENON1T experiment at the Laboratori Nazionali del Gran Sasso is the most sensitive direct detection experiment for dark matter in the form of weakly interacting particles (WIMPs) with masses above $6,$GeV/$c^2$ scattering off nuclei. The detector employs a dual-phase time projection chamber with 2.0 metric tons of liquid xenon in the target. A one metric $mathrm{ton}timesmathrm{year}$ exposure of science data was collected between October 2016 and February 2018. This article reports on the performance of the detector during this period and describes details of the data analysis that led to the most stringent exclusion limits on various WIMP-nucleon interaction models to date. In particular, signal reconstruction, event selection and calibration of the detector response to nuclear and electronic recoils in XENON1T are discussed.
The XENON1T experiment searches for dark matter particles through their scattering off xenon atoms in a 2 tonne liquid xenon target. The detector is a dual-phase time projection chamber, which measures simultaneously the scintillation and ionization signals produced by interactions in target volume, to reconstruct energy and position, as well as the type of the interaction. The background rate in the central volume of XENON1T detector is the lowest achieved so far with a liquid xenon-based direct detection experiment. In this work we describe the response model of the detector, the background and signal models, and the statistical inference procedures used in the dark matter searches with a 1 tonne$times$year exposure of XENON1T data, that leaded to the best limit to date on WIMP-nucleon spin-independent elastic scatter cross-section for WIMP masses above 6 GeV/c$^2$.
The LUX experiment has performed searches for dark matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived from ${1.4}times 10^{4};mathrm{kg,days}$ of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.
The XENON1T dark matter experiment aims to detect Weakly Interacting Massive Particles (WIMPs) through low-energy interactions with xenon atoms. To detect such a rare event necessitates the use of radiopure materials to minimize the number of background events within the expected WIMP signal region. In this paper we report the results of an extensive material radioassay campaign for the XENON1T experiment. Using gamma-ray spectroscopy and mass spectrometry techniques, systematic measurements of trace radioactive impurities in over one hundred samples within a wide range of materials were performed. The measured activities allowed for stringent selection and placement of materials during the detector construction phase and provided the input for XENON1T detection sensitivity estimates through Monte Carlo simulations.
The CHIPS experiment will comprise a 10 kton water Cherenkov detector in an open mine pit in northern Minnesota, USA. The detector has been simulated using a full GEANT4 simulation and a series of event reconstruction algorithms have been developed to exploit the charge and time information from all of the PMTs. A comparison of simulated CCQE nu_mu and nu_e interactions using 10 inch and 3 inch PMTs is presented, alongside a comparison of 10% and 6% photocathode coverage for 3 inch PMTs. The studies demonstrate that the required selection efficiency and purity of charged-current nu_e interactions can be achieved using a photocathode coverage of 6% with 3 inch PMTs. Finally, a dedicated pi-zero fitter is shown to successfully reconstruct a clean sample of pi-zero mesons despite the low 6% photocathode coverage with 3 inch PMTs.
The XENON1T experiment is currently in the commissioning phase at the Laboratori Nazionali del Gran Sasso, Italy. In this article we study the experiments expected sensitivity to the spin-independent WIMP-nucleon interaction cross section, based on Monte Carlo predictions of the electronic and nuclear recoil backgrounds. The total electronic recoil background in $1$ tonne fiducial volume and ($1$, $12$) keV electronic recoil equivalent energy region, before applying any selection to discriminate between electronic and nuclear recoils, is $(1.80 pm 0.15) cdot 10^{-4}$ ($rm{kg} cdot day cdot keV)^{-1}$, mainly due to the decay of $^{222}rm{Rn}$ daughters inside the xenon target. The nuclear recoil background in the corresponding nuclear recoil equivalent energy region ($4$, $50$) keV, is composed of $(0.6 pm 0.1)$ ($rm{t} cdot y)^{-1}$ from radiogenic neutrons, $(1.8 pm 0.3) cdot 10^{-2}$ ($rm{t} cdot y)^{-1}$ from coherent scattering of neutrinos, and less than $0.01$ ($rm{t} cdot y)^{-1}$ from muon-induced neutrons. The sensitivity of XENON1T is calculated with the Profile Likelihood Ratio method, after converting the deposited energy of electronic and nuclear recoils into the scintillation and ionization signals seen in the detector. We take into account the systematic uncertainties on the photon and electron emission model, and on the estimation of the backgrounds, treated as nuisance parameters. The main contribution comes from the relative scintillation efficiency $mathcal{L}_mathrm{eff}$, which affects both the signal from WIMPs and the nuclear recoil backgrounds. After a $2$ y measurement in $1$ t fiducial volume, the sensitivity reaches a minimum cross section of $1.6 cdot 10^{-47}$ cm$^2$ at m$_chi$=$50$ GeV/$c^2$.
E. Aprile
,J. Aalbers
,F. Agostini
.
(2019)
.
"XENON1T Dark Matter Data Analysis: Signal Reconstruction, Calibration and Event Selection"
.
Constanze Hasterok
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا