Creation of User Friendly Datasets: Insights from a Case Study concerning Explanations of Loan Denials


Abstract in English

Most explainable AI (XAI) techniques are concerned with the design of algorithms to explain the AIs decision. However, the data that is used to train these algorithms may contain features that are often incomprehensible to an end-user even with the best XAI algorithms. Thus, the problem of explainability has to be addressed starting right from the data creation step. In this paper, we studied this problem considering the use-case of explaining loan denials to end-users as opposed to AI engineers or domain experts. Motivated by the lack of datasets that are representative of user-friendly explanations, we build the first-of-its-kind dataset that is representative of user-friendly explanations for loan denials. The paper shares some of the insights gained in curating the dataset. First, existing datasets seldom contain features that end users consider as acceptable in understanding a models decision. Second, understanding of the explanations context such as the human-in-the-loop seeking the explanation, and the purpose for which an explanation is sought, aids in the creation of user-friendly datasets. Thus, our dataset, which we call Xnet, also contains explanations that serve different purposes: those that educate the loan applicants, and help them take appropriate action towards a future approval. We hope this work will trigger the creation of new user friendly datasets, and serve as a guide for the curation of such datasets.

Download