Do you want to publish a course? Click here

Schwinger-Dyson and loop equations for a product of square Ginibre random matrices

209   0   0.0 ( 0 )
 Added by Stephane Dartois
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we study the product of two complex Ginibre matrices and the loop equations satisfied by their resolvents (i.e. the Stieltjes transform of the correlation functions). We obtain using Schwinger-Dyson equation (SDE) techniques the general loop equations satisfied by the resolvents. In order to deal with the product structure of the random matrix of interest, we consider SDEs involving the integral of higher derivatives. One of the advantage of this technique is that it bypasses the reformulation of the problem in terms of singular values. As a byproduct of this study we obtain the large $N$ limit of the Stieltjes transform of the $2$-point correlation function, as well as the first correction to the Stieltjes transform of the density, giving us access to corrections to the smoothed density. In order to pave the way for the establishment of a topological recursion formula we also study the geometry of the corresponding spectral curve. This paper also contains explicit results for different resolvents and their corrections.



rate research

Read More

178 - G. Akemann , Z. Burda 2012
We consider the product of n complex non-Hermitian, independent random matrices, each of size NxN with independent identically distributed Gaussian entries (Ginibre matrices). The joint probability distribution of the complex eigenvalues of the product matrix is found to be given by a determinantal point process as in the case of a single Ginibre matrix, but with a more complicated weight given by a Meijer G-function depending on n. Using the method of orthogonal polynomials we compute all eigenvalue density correlation functions exactly for finite N and fixed n. They are given by the determinant of the corresponding kernel which we construct explicitly. In the large-N limit at fixed n we first determine the microscopic correlation functions in the bulk and at the edge of the spectrum. After unfolding they are identical to that of the Ginibre ensemble with n=1 and thus universal. In contrast the microscopic correlations we find at the origin differ for each n>1 and generalise the known Bessel-law in the complex plane for n=2 to a new hypergeometric kernel 0_F_n-1.
187 - B. Eynard 2019
For a given polynomial $V(x)in mathbb C[x]$, a random matrix eigenvalues measure is a measure $prod_{1leq i<jleq N}(x_i-x_j)^2 prod_{i=1}^N e^{-V(x_i)}dx_i$ on $gamma^N$. Hermitian matrices have real eigenvalues $gamma=mathbb R$, which generalize to $gamma$ a complex Jordan arc, or actually a linear combination of homotopy classes of Jordan arcs, chosen such that integrals are absolutely convergent. Polynomial moments of such measure satisfy a set of linear equations called loop equations. We prove that every solution of loop equations are necessarily polynomial moments of some random matrix measure for some choice of arcs. There is an isomorphism between the homology space of integrable arcs and the set of solutions of loop equations. We also generalize this to a 2-matrix model and to the chain of matrices, and to cases where $V$ is not a polynomial but $V(x)in mathbb C(x)$.
Squared singular values of a product of s square random Ginibre matrices are asymptotically characterized by probability distribution P_s(x), such that their moments are equal to the Fuss-Catalan numbers or order s. We find a representation of the Fuss--Catalan distributions P_s(x) in terms of a combination of s hypergeometric functions of the type sF_{s-1}. The explicit formula derived here is exact for an arbitrary positive integer s and for s=1 it reduces to the Marchenko--Pastur distribution. Using similar techniques, involving Mellin transform and the Meijer G-function, we find exact expressions for the Raney probability distributions, the moments of which are given by a two parameter generalization of the Fuss-Catalan numbers. These distributions can also be considered as a two parameter generalization of the Wigner semicircle law.
133 - J. R. Ipsen , M. Kieburg 2013
We study the joint probability density of the eigenvalues of a product of rectangular real, complex or quaternion random matrices in a unified way. The random matrices are distributed according to arbitrary probability densities, whose only restriction is the invariance under left and right multiplication by orthogonal, unitary or unitary symplectic matrices, respectively. We show that a product of rectangular matrices is statistically equivalent to a product of square matrices. Hereby we prove a weak commutation relation of the random matrices at finite matrix sizes, which previously have been discussed for infinite matrix size. Moreover we derive the joint probability densities of the eigenvalues. To illustrate our results we apply them to a product of random matrices drawn from Ginibre ensembles and Jacobi ensembles as well as a mixed version thereof. For these weights we show that the product of complex random matrices yield a determinantal point process, while the real and quaternion matrix ensembles correspond to Pfaffian point processes. Our results are visualized by numerical simulations. Furthermore, we present an application to a transport on a closed, disordered chain coupled to a particle bath.
102 - Christophe Texier 2019
I present a general framework allowing to carry out explicit calculation of the moment generating function of random matrix products $Pi_n=M_nM_{n-1}cdots M_1$, where $M_i$s are i.i.d.. Following Tutubalin [Theor. Probab. Appl. {bf 10}, 15 (1965)], the calculation of the generating function is reduced to finding the largest eigenvalue of a certain transfer operator associated with a family of representations of the group. The formalism is illustrated by considering products of random matrices from the group $mathrm{SL}(2,mathbb{R})$ where explicit calculations are possible. For concreteness, I study in detail transfer matrix products for the one-dimensional Schrodinger equation where the random potential is a Levy noise (derivative of a Levy process). In this case, I obtain a general formula for the variance of $ln||Pi_n||$ and for the variance of $ln|psi(x)|$, where $psi(x)$ is the wavefunction, in terms of a single integral involving the Fourier transform of the invariant density of the matrix product. Finally I discuss the continuum limit of random matrix products (matrices close to the identity ). In particular, I investigate a simple case where the spectral problem providing the generalized Lyapunov exponent can be solved exactly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا