Do you want to publish a course? Click here

A fast implicit solver for semiconductor models in one space dimension

113   0   0.0 ( 0 )
 Added by Ming Tse Paul Laiu
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Several different approaches are proposed for solving fully implicit discretizations of a simplified Boltzmann-Poisson system with a linear relaxation-type collision kernel. This system models the evolution of free electrons in semiconductor devices under a low-density assumption. At each implicit time step, the discretized system is formulated as a fixed-point problem, which can then be solved with a variety of methods. A key algorithmic component in all the approaches considered here is a recently developed sweeping algorithm for Vlasov-Poisson systems. A synthetic acceleration scheme has been implemented to accelerate the convergence of iterative solvers by using the solution to a drift-diffusion equation as a preconditioner. The performance of four iterative solvers and their accelerated variants has been compared on problems modeling semiconductor devices with various electron mean-free-path.



rate research

Read More

We present and analyze a new iterative solver for implicit discretizations of a simplified Boltzmann-Poisson system. The algorithm builds on recent work that incorporated a sweeping algorithm for the Vlasov-Poisson equations as part of nested inner-outer iterative solvers for the Boltzmann-Poisson equations. The new method eliminates the need for nesting and requires only one transport sweep per iteration. It arises as a new fixed-point formulation of the discretized system which we prove to be contractive for a given electric potential. We also derive an accelerator to improve the convergence rate for systems in the drift-diffusion regime. We numerically compare the efficiency of the new solver, with and without acceleration, with a recently developed nested iterative solver.
We study the multi-dimensional radiative transfer phenomena using the ISMC scheme, in both gray and multi-frequency problems. Implicit Monte-Carlo (IMC) schemes have been in use for five decades. The basic algorithm yields teleportation errors, where photons propagate faster than the correct heat front velocity. Recently [Poette and Valentin, J. Comp. Phys., 412, 109405 (2020)], a new implicit scheme based on the semi-analog scheme was presented and tested in several one-dimensional gray problems. In this scheme, the material energy of the cell is carried by material-particles, and the photons are produced only from existing material particles. As a result, the teleportation errors vanish, due to the infinite discrete spatial accuracy of the scheme. We examine the validity of the new scheme in two-dimensional problems, both in Cartesian and Cylindrical geometries. Additionally, we introduce an expansion of the new scheme for multi-frequency problems. We show that the ISMC scheme presents excellent results without teleportation errors in a large number of benchmarks, especially against the slow classic IMC convergence.
We introduce an assisted exchange model (AEM) on a one dimensional periodic lattice with (K+1) different species of hard core particles, where the exchange rate depends on the pair of particles which undergo exchange and their immediate left neighbor. We show that this stochastic process has a pair factorized steady state for a broad class of exchange dynamics. We calculate exactly the particle current and spatial correlations (K+1)-species AEM using a transfer matrix formalism. Interestingly the current in AEM exhibits density dependent current reversal and negative differential mobility- both of which have been discussed elaborately by using a two species exchange model which resembles the partially asymmetric conserved lattice gas model in one dimension. Moreover, multi-species version of AEM exhibits additional features like multiple points of current reversal, and unusual response of particle current.
151 - Chusei Kiumi , Kei Saito 2021
Localization is a characteristic phenomenon of space-inhomogeneous quantum walks in one dimension, where particles remain localized at their initial position. Eigenvectors of time evolution operators are deeply related to the amount of trapping. In this paper, we introduce the analytical method for the eigenvalue problem using a transfer matrix to quantitatively evaluate localization by deriving the time-averaged limit distribution and reveal the condition of strong trapping.
201 - Yifei Sun , Jingrun Chen , Rui Du 2021
Magnetization dynamics in magnetic materials is modeled by the Landau-Lifshitz-Gilbert (LLG) equation. In the LLG equation, the length of magnetization is conserved and the system energy is dissipative. Implicit and semi-implicit schemes have been used in micromagnetics simulations due to their unconditional numerical stability. In more details, implicit schemes preserve the properties of the LLG equation, but solve a nonlinear system of equations per time step. In contrast, semi-implicit schemes only solve a linear system of equations, while additional operations are needed to preserve the length of magnetization. It still remains unclear which one shall be used if both implicit and semi-implicit schemes are available. In this work, using the implicit Crank-Nicolson (ICN) scheme as a benchmark, we propose to make this implicit scheme semi-implicit. It can be proved that both schemes are second-order accurate in space and time. For the unique solvability of nonlinear systems of equations in the ICN scheme, we require that the temporal step size scales quadratically with the spatial mesh size. It is numerically verified that the convergence of the nonlinear solver becomes slower for larger temporal step size and multiple magnetization profiles are obtained for different initial guesses. The linear systems of equations in the semi-implicit CN (SICN) scheme are unconditionally uniquely solvable, and the condition that the temporal step size scales linearly with the spatial mesh size is needed in the convergence of the SICN scheme. In terms of numerical efficiency, the SICN scheme achieves the same accuracy as the ICN scheme with less computational time. Based on these results, we conclude that a semi-implicit scheme is superior to its implicit analog both theoretically and numerically, and we recommend the semi-implicit scheme in micromagnetics simulations if both methods are available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا