Do you want to publish a course? Click here

The conjugacy problem for UPG elements of $Out(F_n)$

90   0   0.0 ( 0 )
 Added by Michael Handel
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

$Out(F_n):=Aut(F_n)/Inn(F_n)$ denotes the outer automorphism group of the rank $n$ free group $F_n$. An element $phi$ of $Out(F_n)$ is polynomially growing if the word lengths of conjugacy classes in $F_n$ grow at most polynomially under iteration by $phi$. We restrict attention to the subset $UPG(F_n)$ of $Out(F_n)$ consisting of polynomially growing elements whose action on $H_1(F_n, Z)$ is unipotent. In particular, if $phi$ is polynomially growing and acts trivially on $H_1(F_n,Z_3)$ then $phi$ is in $UPG(F_n)$ and also every polynomially growing element of $Out(F_n)$ has a positive power that is in $UPG(F_n)$. In this paper we solve the conjugacy problem for $UPG(F_n)$. Specifically we construct an algorithm that takes as input $phi, psiin UPG(F_n)$ and outputs YES or NO depending on whether or not there is $thetain Out(F_n)$ such that $psi=thetaphitheta^{-1}$. Further, if YES then such a $theta$ is produced.



rate research

Read More

We show that if a f.g. group $G$ has a non-elementary WPD action on a hyperbolic metric space $X$, then the number of $G$-conjugacy classes of $X$-loxodromic elements of $G$ coming from a ball of radius $R$ in the Cayley graph of $G$ grows exponentially in $R$. As an application we prove that for $Nge 3$ the number of distinct $Out(F_N)$-conjugacy classes of fully irreducibles $phi$ from an $R$-ball in the Cayley graph of $Out(F_N)$ with $loglambda(phi)$ on the order of $R$ grows exponentially in $R$.
We prove that $Out(F_N)$ is boundary amenable. This also holds more generally for $Out(G)$, where $G$ is either a toral relatively hyperbolic group or a finitely generated right-angled Artin group. As a consequence, all these groups satisfy the Novikov conjecture on higher signatures.
For any finite collection $f_i$ of fully irreducible automorphisms of the free group $F_n$ we construct a connected $delta$-hyperbolic $Out(F_n)$-complex in which each $f_i$ has positive translation length.
We give a short proof of Masbaum and Reids result that mapping class groups involve any finite group, appealing to free quotients of surface groups and a result of Gilman, following Dunfield-Thurston.
We present a new algorithm that, given two matrices in $GL(n,Q)$, decides if they are conjugate in $GL(n,Z)$ and, if so, determines a conjugating matrix. We also give an algorithm to construct a generating set for the centraliser in $GL(n,Z)$ of a matrix in $GL(n,Q)$. We do this by reducing these problems respectively to the isomorphism and automorphism group problems for certain modules over rings of the form $mathcal O_K[y]/(y^l)$, where $mathcal O_K$ is the maximal order of an algebraic number field and $l in N$, and then provide algorithms to solve the latter. The algorithms are practical and our implementations are publicly available in Magma.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا