No Arabic abstract
$Out(F_n):=Aut(F_n)/Inn(F_n)$ denotes the outer automorphism group of the rank $n$ free group $F_n$. An element $phi$ of $Out(F_n)$ is polynomially growing if the word lengths of conjugacy classes in $F_n$ grow at most polynomially under iteration by $phi$. We restrict attention to the subset $UPG(F_n)$ of $Out(F_n)$ consisting of polynomially growing elements whose action on $H_1(F_n, Z)$ is unipotent. In particular, if $phi$ is polynomially growing and acts trivially on $H_1(F_n,Z_3)$ then $phi$ is in $UPG(F_n)$ and also every polynomially growing element of $Out(F_n)$ has a positive power that is in $UPG(F_n)$. In this paper we solve the conjugacy problem for $UPG(F_n)$. Specifically we construct an algorithm that takes as input $phi, psiin UPG(F_n)$ and outputs YES or NO depending on whether or not there is $thetain Out(F_n)$ such that $psi=thetaphitheta^{-1}$. Further, if YES then such a $theta$ is produced.
We show that if a f.g. group $G$ has a non-elementary WPD action on a hyperbolic metric space $X$, then the number of $G$-conjugacy classes of $X$-loxodromic elements of $G$ coming from a ball of radius $R$ in the Cayley graph of $G$ grows exponentially in $R$. As an application we prove that for $Nge 3$ the number of distinct $Out(F_N)$-conjugacy classes of fully irreducibles $phi$ from an $R$-ball in the Cayley graph of $Out(F_N)$ with $loglambda(phi)$ on the order of $R$ grows exponentially in $R$.
We prove that $Out(F_N)$ is boundary amenable. This also holds more generally for $Out(G)$, where $G$ is either a toral relatively hyperbolic group or a finitely generated right-angled Artin group. As a consequence, all these groups satisfy the Novikov conjecture on higher signatures.
For any finite collection $f_i$ of fully irreducible automorphisms of the free group $F_n$ we construct a connected $delta$-hyperbolic $Out(F_n)$-complex in which each $f_i$ has positive translation length.
We give a short proof of Masbaum and Reids result that mapping class groups involve any finite group, appealing to free quotients of surface groups and a result of Gilman, following Dunfield-Thurston.
We present a new algorithm that, given two matrices in $GL(n,Q)$, decides if they are conjugate in $GL(n,Z)$ and, if so, determines a conjugating matrix. We also give an algorithm to construct a generating set for the centraliser in $GL(n,Z)$ of a matrix in $GL(n,Q)$. We do this by reducing these problems respectively to the isomorphism and automorphism group problems for certain modules over rings of the form $mathcal O_K[y]/(y^l)$, where $mathcal O_K$ is the maximal order of an algebraic number field and $l in N$, and then provide algorithms to solve the latter. The algorithms are practical and our implementations are publicly available in Magma.