We investigate the performance of Greens function coupled cluster singles and doubles (CCSD) method as a solver for Greens function embedding methods. To develop an efficient CC solver, we construct the one-particle Greens function from the coupled cluster (CC) wave function based on a non-hermitian Lanczos algorithm. The major advantage of this method is that its scaling does not depend on the number of frequency points. We have tested the applicability of the CC Greens function solver in the weakly to strongly correlated regimes by employing it for a half-filled 1D Hubbard model projected onto a single site impurity problem and a half-filled 2D Hubbard model projected onto a 4-site impurity problem. For the 1D Hubbard model, for all interaction strengths, we observe an excellent agreement with the full configuration interaction (FCI) technique, both for the self-energy and spectral function. For the 2D Hubbard, we have employed an open-shell version of the current implementation and observed some discrepancies from FCI in the strongly correlated regime. Finally, on an example of a small ammonia cluster, we analyze the performance of the Greens function CCSD solver within the self-energy embedding theory (SEET) with Hartee-Fock (HF) and Greens function second order (GF2) for the treatment of the environment.