No Arabic abstract
We consider gravitational perturbations of 2D dilaton gravity systems and show that these can be recast into $Tbar{T}$-deformations (at least) under certain conditions, where $T$ means the energy-momentum tensor of the matter field coupled to a dilaton gravity. In particular, the class of theories under this condition includes a Jackiw-Teitelboim (JT) theory with a negative cosmological constant including conformal matter fields. This is a generalization of the preceding work on the flat-space JT gravity by S. Dubovsky, V. Gorbenko and M. Mirbabayi [arXiv:1706.06604].
We consider a gravitational perturbation of the Jackiw-Teitelboim (JT) gravity with an arbitrary dilaton potential and study the condition under which the quadratic action can be seen as a $Tbar{T}$-deformation of the matter action. As a special case, the flat-space JT gravity discussed by Dubovsky et al[arXiv:1706.06604 ] is included. Another interesting example is a hyperbolic dilaton potential. This case is equivalent to a classical Liouville gravity with a negative cosmological constant and then a finite $Tbar{T}$-deformation of the matter action is realized as a gravitational perturbation on AdS$_2$.
String theory on AdS$_3$ with NS-NS fluxes admits a solvable irrelevant deformation which is close to the $Tbar{T}$ deformation of the dual CFT$_2$. This consists of deforming the worldsheet action, namely the action of the $SL(2,mathbb{R})$ WZW model, by adding to it the operator $J^-bar{J}^-$, constructed with two Kac-Moody currents. The geometrical interpretation of the resulting theory is that of strings on a conformally flat background that interpolates between AdS$_3$ in the IR and a flat linear dilaton spacetime with Hagedorn spectrum in the UV, having passed through a transition region of positive curvature. Here, we study the properties of this string background both from the point of view of the low-energy effective theory and of the worldsheet CFT. We first study the geometrical properties of the semiclassical geometry, then we revise the computation of correlation functions and of the spectrum of the $J^-bar{J}^-$-deformed worldsheet theory, and finally we discuss how to extend this type of current-current deformation to other conformal models.
We show that several features of the Jackiw-Teitelboim model are in fact universal properties of two-dimensional Maxwell-dilaton gravity theories with a broad class of asymptotics. These theories satisfy a flow equation with the structure of a dimensionally reduced TTbar deformation, and exhibit chaotic behavior signaled by a maximal Lyapunov exponent. One consequence of our results is a no-go theorem for smooth flows from an asymptotically AdS2 region to a de Sitter fixed point.
In this paper, we continue the study of $Tbar{T}$ deformation in $d=1$ quantum mechanical systems and propose possible analogues of $Jbar{T}$ deformation and deformation by a general linear combination of $Tbar{T}$ and $Jbar{T}$ in quantum mechanics. We construct flow equations for the partition functions of the deformed theory, the solutions to which yields the deformed partition functions as integral of the undeformed partition function weighted by some kernels. The kernel formula turns out to be very useful in studying the deformed two-point functions and analyzing the thermodynamics of the deformed theory. Finally, we show that a non-perturbative UV completion of the deformed theory is given by minimally coupling the undeformed theory to worldline gravity and $U(1)$ gauge theory.
We investigate the $Tbar{T}$ deformations of two-dimensional supersymmetric quantum field theories. More precisely, we show that, by using the conservation equations for the supercurrent multiplet, the $Tbar{T}$ deforming operator can be constructed as a supersymmetric descendant. Here we focus on $mathcal{N}=(1,0)$ and $mathcal{N}=(1,1)$ supersymmetry. As an example, we analyse in detail the $Tbar{T}$ deformation of a free $mathcal{N}=(1,0)$ supersymmetric action. We also argue that the link between $Tbar{T}$ and string theory can be extended to superstrings: by analysing the light-cone gauge fixing for superstrings in flat space, we show the correspondence of the string action to the $Tbar{T}$ deformation of a free theory of eight $mathcal{N}=(1,1)$ scalar multiplets on the nose. We comment on how these constructions relate to the geometrical interpretations of $Tbar{T}$ deformations that have recently been discussed in the literature.