Norms of weighted sums of log-concave random vectors


Abstract in English

Let $C$ and $K$ be centrally symmetric convex bodies of volume $1$ in ${mathbb R}^n$. We provide upper bounds for the multi-integral expression begin{equation*}|{bf t}|_{C^s,K}=int_{C}cdotsint_{C}Big|sum_{j=1}^st_jx_jBig|_K,dx_1cdots dx_send{equation*} in the case where $C$ is isotropic. Our approach provides an alternative proof of the sharp lower bound, due to Gluskin and V. Milman, for this quantity. We also present some applications to randomized vector balancing problems.

Download