Do you want to publish a course? Click here

Fast Cadzows Algorithm and a Gradient Variant

296   0   0.0 ( 0 )
 Added by Ke Wei
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

The Cadzows algorithm is a signal denoising and recovery method which was designed for signals corresponding to low rank Hankel matrices. In this paper we first introduce a Fast Cadzows algorithm which is developed by incorporating a novel subspace projection to reduce the high computational cost of the SVD in the Cadzows algorithm. Then a Gradient method and a Fast Gradient method are proposed to address the non-decreasing MSE issue when applying the Cadzows or Fast Cadzows algorithm for signal denoising. Extensive empirical performance comparisons demonstrate that the proposed algorithms can complete the denoising and recovery tasks more efficiently and effectively.



rate research

Read More

As a counterpoint to recent numerical methods for crystal surface evolution, which agree well with microscopic dynamics but suffer from significant stiffness that prevents simulation on fine spatial grids, we develop a new numerical method based on the macroscopic partial differential equation, leveraging its formal structure as the gradient flow of the total variation energy, with respect to a weighted $H^{-1}$ norm. This gradient flow structure relates to several metric space gradient flows of recent interest, including 2-Wasserstein flows and their generalizations to nonlinear mobilities. We develop a novel semi-implicit time discretization of the gradient flow, inspired by the classical minimizing movements scheme (known as the JKO scheme in the 2-Wasserstein case). We then use a primal dual hybrid gradient (PDHG) method to compute each element of the semi-implicit scheme. In one dimension, we prove convergence of the PDHG method to the semi-implicit scheme, under general integrability assumptions on the mobility and its reciprocal. Finally, by taking finite difference approximations of our PDHG method, we arrive at a fully discrete numerical algorithm, with iterations that converge at a rate independent of the spatial discretization: in particular, the convergence properties do not deteriorate as we refine our spatial grid. We close with several numerical examples illustrating the properties of our method, including facet formation at local maxima, pinning at local minima, and convergence as the spatial and temporal discretizations are refined.
We present a new fast algorithm for computing the Boys function using nonlinear approximation of the integrand via exponentials. The resulting algorithms evaluate the Boys function with real and complex valued arguments and are competitive with previously developed algorithms for the same purpose.
We propose a new algorithm to compute the X-ray transform of an image represented by unit (pixel/voxel) basis functions. The fundamental issue is equivalently calculating the intersection lengths of the ray with associated units. For any given ray, we first derive the sufficient and necessary condition for non-vanishing intersectability. By this condition, we then distinguish the units that produce valid intersections with the ray. Only for those units rather than all the individuals, we calculate the intersection lengths by the obtained analytic formula. The proposed algorithm is adapted to 2D/3D parallel beam and 2D fan beam. Particularly, we derive the transformation formulas and generalize the algorithm to 3D circular and helical cone beams. Moreover, we discuss the intrinsic ambiguities of the problem itself, and present a solution. The algorithm not only possesses the adaptability with regard to the center position, scale and size of the image, but also is suited to parallelize with optimality. The comparison study demonstrates the proposed algorithm is fast, more complete, and is more flexible with respect to different scanning geometries and different basis functions. Finally, we validate the correctness of the algorithm by the aforementioned scanning geometries.
We present a fast method for evaluating expressions of the form $$ u_j = sum_{i = 1,i ot = j}^n frac{alpha_i}{x_i - x_j}, quad text{for} quad j = 1,ldots,n, $$ where $alpha_i$ are real numbers, and $x_i$ are points in a compact interval of $mathbb{R}$. This expression can be viewed as representing the electrostatic potential generated by charges on a line in $mathbb{R}^3$. While fast algorithms for computing the electrostatic potential of general distributions of charges in $mathbb{R}^3$ exist, in a number of situations in computational physics it is useful to have a simple and extremely fast method for evaluating the potential of charges on a line; we present such a method in this paper, and report numerical results for several examples.
101 - Yanli Chen , Xue Jiang , Jun Lai 2020
The paper is concerned with the three-dimensional electromagnetic scattering from a large open rectangular cavity that is embedded in a perfectly electrically conducting infinite ground plane. By introducing a transparent boundary condition, the scattering problem is formulated into a boundary value problem in the bounded cavity. Based on the Fourier expansions of the electric field, the Maxwell equation is reduced to one-dimensional ordinary differential equations for the Fourier coefficients. A fast algorithm, employing the fast Fourier transform and the Gaussian elimination, is developed to solve the resulting linear system for the cavity which is filled with either a homogeneous or a layered medium. In addition, a novel scheme is designed to evaluate rapidly and accurately the Fourier transform of singular integrals. Numerical experiments are presented for large cavities to demonstrate the superior performance of the proposed method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا