Shubnikov de Haas resistance oscillations of highly mobile two dimensional helical electrons propagating on a conducting surface of strained HgTe 3D topological insulator are studied in magnetic fields B tilted by angle $theta$ from the normal to the conducting layer. Strong decrease of oscillation amplitude A is observed with the tilt: $A sim exp(-xi/cos(theta))$, where $xi$ is a constant. Evolution of the oscillations with temperature T shows that the parameter $xi$ contains two terms: $xi=xi_1+xi_2 T$. The temperature independent term, $xi_1$, describes reduction of electron mean free path in magnetic field B pointing toward suppression of the topological protection of the electron states against impurity scattering. The temperature dependent term, $xi_2 T$, indicates increase of the reciprocal velocity of 2D helical electrons suggesting modification of the electron spectrum in magnetic fields.