No Arabic abstract
The dependence of polarization fraction $p$ on total intensity $I$ in polarized submillimeter emission measurements is typically parameterized as $ppropto I^{-alpha}$ $(alpha leq 1)$, and used to infer dust grain alignment efficiency in star-forming regions, with an index $alpha=1$ indicating near-total lack of alignment of grains with the magnetic field. In this work we demonstrate that the non-Gaussian noise characteristics of polarization fraction may produce apparent measurements of $alpha sim 1$ even in data with significant signal-to-noise in Stokes $Q$, $U$ and $I$ emission, and so with robust measurements of polarization angle. We present a simple model demonstrating this behavior, and propose a criterion by which well-characterized measurements of polarization fraction may be identified. We demonstrate that where our model is applicable, $alpha$ can be recovered by fitting the $p-I$ relationship with the mean of the Rice distribution, without statistical debiasing of polarization fraction. We apply our model to JCMT BISTRO Survey POL-2 850$mu$m observations of three clumps in the Ophiuchus Molecular Cloud, finding that in the externally-illuminated Oph A region, $alphaapprox 0.34$, while in the more isolated Oph B and C, despite their differing star formation histories, $alpha sim 0.6-0.7$. Our results thus suggest that dust grain alignment in dense gas is more strongly influenced by incident interstellar radiation field than by star formation history. We further find that grains may remain aligned with the magnetic field at significantly higher gas densities than has previously been believed, thus allowing investigation of magnetic field properties within star-forming clumps and cores.
We present 850$mu$m polarization observations of the L1689 molecular cloud, part of the nearby Ophiuchus molecular cloud complex, taken with the POL-2 polarimeter on the James Clerk Maxwell Telescope (JCMT). We observe three regions of L1689: the clump L1689N which houses the IRAS 16293-2422 protostellar system, the starless clump SMM-16, and the starless core L1689B. We use the Davis-Chandrasekhar-Fermi method to estimate plane-of-sky field strengths of $366pm 55$ $mu$G in L1689N, $284pm 34$ $mu$G in SMM-16, and $72pm 33$ $mu$G in L1689B, for our fiducial value of dust opacity. These values indicate that all three regions are likely to be magnetically trans-critical with sub-Alfv{e}nic turbulence. In all three regions, the inferred mean magnetic field direction is approximately perpendicular to the local filament direction identified in $Herschel$ Space Telescope observations. The core-scale field morphologies for L1689N and L1689B are consistent with the cloud-scale field morphology measured by the $Planck$ Space Observatory, suggesting that material can flow freely from large to small scales for these sources. Based on these magnetic field measurements, we posit that accretion from the cloud onto L1689N and L1689B may be magnetically regulated. However, in SMM-16, the clump-scale field is nearly perpendicular to the field seen on cloud scales by $Planck$, suggesting that it may be unable to efficiently accrete further material from its surroundings.
CO, $^{13}$CO and C$^{18}$O ${it J}$ = 3--2 observations are presented of the Ophiuchus molecular cloud. The $^{13}$CO and C$^{18}$O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F and J regions. The optically thin(ner) C$^{18}$O line is used as a column density tracer, from which the gravitational binding energy is estimated to be $4.5 times 10^{39}$ J (2282 $M_odot$ km$^2$ s$^{-2}$). The turbulent kinetic energy is $6.3 times 10^{38}$ J (320 $M_odot$ km$^2$ s$^{-2}$), or 7 times less than this, and therefore the Oph cloud as a whole is gravitationally bound. Thirty protostars were searched for high velocity gas, with eight showing outflows, and twenty more having evidence of high velocity gas along their lines-of-sight. The total outflow kinetic energy is $1.3 times 10^{38}$ J (67 $M_odot$ km$^2$ s$^{-2}$), corresponding to 21$%$ of the clouds turbulent kinetic energy. Although turbulent injection by outflows is significant, but does ${it not}$ appear to be the dominant source of turbulence in the cloud. 105 dense molecular clumplets were identified, which had radii $sim$ 0.01--0.05 pc, virial masses $sim$ 0.1--12 $M_odot$, luminosities $sim$ 0.001--0.1 K~km s$^{-1}$ pc$^{-2}$, and excitation temperatures $sim$ 10--50K. These are consistent with the standard GMC based size-line width relationships, showing that the scaling laws extend down to size scales of hundredths of a parsec, and to sub solar-mass condensations. There is however no compelling evidence that the majority of clumplets are undergoing free-fall collapse, nor that they are pressure confined.
We present the first 850 $mu$m polarization observations in the most active star-forming site of the Rosette Molecular Cloud (RMC, $dsim$1.6 kpc) in the wall of the Rosette Nebula, imaged with the SCUBA-2/POL-2 instruments of the JCMT, as part of the B-Fields In Star-Forming Region Observations 2 (BISTRO-2) survey. From the POL-2 data we find that the polarization fraction decreases with the 850 $mu$m continuum intensity with $alpha$ = 0.49 $pm$ 0.08 in the $p propto I^{rm -alpha}$ relation, which suggests that some fraction of the dust grains remain aligned at high densities. The north of our 850 $mu$m image reveals a gemstone ring morphology, which is a $sim$1 pc-diameter ring-like structure with extended emission in the head to the south-west. We hypothesize that it might have been blown by feedback in its interior, while the B-field is parallel to its circumference in most places. In the south of our SCUBA-2 field the clumps are apparently connected with filaments which follow Infrared Dark Clouds (IRDCs). Here, the POL-2 magnetic field orientations appear bimodal with respect to the large-scale Planck field. The mass of our effective mapped area is $sim$ 174 $M_odot$ that we calculate from 850 $mu$m flux densities. We compare our results with masses from large-scale emission-subtracted Herschel 250 $mu$m data, and find agreement within 30%. We estimate the POS B-field strength in one typical subregion using the Davis-Chandrasekhar-Fermi (DCF) technique and find 80 $pm$ 30 $mu$G toward a clump and its outskirts. The estimated mass-to-flux ratio of $lambda$ = 2.3 $pm$ 1.0 suggests that the B-field is not sufficiently strong to prevent gravitational collapse in this subregion.
We report 850~$mu$m dust polarization observations of a low-mass ($sim$12 $M_{odot}$) starless core in the $rho$ Ophiuchus cloud, Ophiuchus C, made with the POL-2 instrument on the James Clerk Maxwell Telescope (JCMT) as part of the JCMT B-fields In STar-forming Region Observations (BISTRO) survey. We detect an ordered magnetic field projected on the plane of sky in the starless core. The magnetic field across the $sim$0.1~pc core shows a predominant northeast-southwest orientation centering between $sim$40$^circ$ to $sim$100$^circ$, indicating that the field in the core is well aligned with the magnetic field in lower-density regions of the cloud probed by near-infrared observations and also the cloud-scale magnetic field traced by Planck observations. The polarization percentage ($P$) decreases with an increasing total intensity ($I$) with a power-law index of $-$1.03 $pm$ 0.05. We estimate the plane-of-sky field strength ($B_{mathrm{pos}}$) using modified Davis-Chandrasekhar-Fermi (DCF) methods based on structure function (SF), auto-correlation (ACF), and unsharp masking (UM) analyses. We find that the estimates from the SF, ACF, and UM methods yield strengths of 103 $pm$ 46 $mu$G, 136 $pm$ 69 $mu$G, and 213 $pm$ 115 $mu$G, respectively. Our calculations suggest that the Ophiuchus C core is near magnetically critical or slightly magnetically supercritical (i.e. unstable to collapse). The total magnetic energy calculated from the SF method is comparable to the turbulent energy in Ophiuchus C, while the ACF method and the UM method only set upper limits for the total magnetic energy because of large uncertainties.
We compare the directions of molecular outflows of 62 low-mass Class 0 and I protostars in nearby (<450 pc) star-forming regions with the mean orientations of the magnetic fields on 0.05-0.5 pc scales in the dense cores/clumps where they are embedded. The magnetic field orientations were measured using the JCMT POL-2 data taken by the BISTRO-1 survey and from the archive. The outflow directions were observed with interferometers in the literature. The observed distribution of the angles between the outflows and the magnetic fields peaks between 15 and 35 degrees. After considering projection effects, our results could suggest that the outflows tend to be misaligned with the magnetic fields by 50+/-15 degrees in three-dimensional space and are less likely (but not ruled out) randomly oriented with respect to the magnetic fields. There is no correlation between the misalignment and the bolometric temperatures in our sample. In several sources, the small-scale (1000-3000 au) magnetic fields is more misaligned with the outflows than their large-scale magnetic fields, suggesting that the small-scale magnetic field has been twisted by the dynamics. In comparison with turbulent MHD simulations of core formation, our observational results are more consistent with models in which the energy densities in the magnetic field and the turbulence of the gas are comparable. Our results also suggest that the misalignment alone cannot sufficiently reduce the efficiency of magnetic braking to enable formation of the observed number of large Keplerian disks with sizes larger than 30-50 au.