Incoherent hydrodynamics and density waves


Abstract in English

We consider thermal phases of holographic lattices at finite chemical potential in which a continuous internal bulk symmetry can be spontaneously broken. In the normal phase, translational symmetry is explicitly broken by the lattice and the only conserved quantities are related to time translations and the electric charge. The long wavelength excitations of the corresponding charge densities are described by incoherent hydrodynamics yielding two perturbative modes which are diffusive. In the broken phase an additional hydrodynamic degree of freedom couples to the local chemical potential and temperature and we write an effective theory describing the coupled system at leading order in a derivative expansion.

Download