Do you want to publish a course? Click here

Fractional disclination charge in two-dimensional $C_n-$symmetric topological crystalline insulators

120   0   0.0 ( 0 )
 Added by Tianhe Li
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Robust fractional charge localized at disclination defects has been recently found as a topological response in $C_{6}$ symmetric 2D topological crystalline insulators (TCIs). In this article, we thoroughly investigate the fractional charge on disclinations in $C_n$ symmetric TCIs, with or without time reversal symmetry, and including spinless and spin-$frac{1}{2}$ cases. We compute the fractional disclination charges from the Wannier representations in real space and use band representation theory to construct topological indices of the fractional disclination charge for all $2D$ TCIs that admit a (generalized) Wannier representation. We find the disclination charge is fractionalized in units of $frac{e}{n}$ for $C_n$ symmetric TCIs; and for spin-$frac{1}{2}$ TCIs, with additional time reversal symmetry, the disclination charge is fractionalized in units of $frac{2e}{n}$. We furthermore prove that with electron-electron interactions that preserve the $C_n$ symmetry and many-body bulk gap, though we can deform a TCI into another which is topologically distinct in the free fermion case, the fractional disclination charge determined by our topological indices will not change in this process. Moreover, we use an algebraic technique to generalize the indices for TCIs with non-zero Chern numbers, where a Wannier representation is not applicable. With the inclusion of the Chern number, our generalized fractional disclination indices apply for all $C_n$ symmetric TCIs. Finally, we briefly discuss the connection between the Chern number dependence of our generalized indices and the Wen-Zee term.



rate research

Read More

In this paper, we derive a general formula for the quantized fractional corner charge in two-dimensional C_n-symmetric higher-order topological insulators. We assume that the electronic states can be described by the Wannier functions and that the edges are charge neutral, but we do not assume vanishing bulk electric polarization. We expand the scope of the corner charge formula obtained in previous works by considering more general surface conditions, such as surfaces with higher Miller index and surfaces with surface reconstruction. Our theory is applicable even when the electronic states are largely modulated near system boundaries. It also applies to insulators with non-vanishing bulk polarization, and we find that in such cases the value of the corner charge depends on the surface termination even for the same bulk crystal with C_3 or C_4 symmetry, via a difference in the Wyckoff position of the center of the C_n-symmetric crystal.
In the presence of crystalline symmetries, certain topological insulators present a filling anomaly: a mismatch between the number of electrons in an energy band and the number of electrons required for charge neutrality. In this paper, we show that a filling anomaly can arise when corners are introduced in $C_n$-symmetric crystalline insulators with vanishing polarization, having as consequence the existence of corner-localized charges quantized in multiples of $frac{e}{n}$. We characterize the existence of this charge systematically and build topological indices that relate the symmetry representations of the occupied energy bands of a crystal to the quanta of fractional charge robustly localized at its corners. When an additional chiral symmetry is present, $frac{e}{2}$ corner charges are accompanied by zero-energy corner-localized states. We show the application of our indices in a number of atomic and fragile topological insulators and discuss the role of fractional charges bound to disclinations as bulk probes for these crystalline phases.
Based on first-principles calculations and symmetry analysis, we predict atomically thin ($1-N$ layers) 2H group-VIB TMDs $MX_2$ ($M$ = Mo, W; $X$ = S, Se, Te) are large-gap higher-order topological crystalline insulators protected by $C_3$ rotation symmetry. We explicitly demonstrate the nontrivial topological indices and existence of the hallmark corner states with quantized fractional charge for these familiar TMDs with large bulk optical band gaps ($1.64-1.95$ eV for the monolayers), which would facilitate the experimental detection by STM. We find that the well-defined corner states exist in the triangular finite-size flakes with armchair edges of the atomically thin ($1-N$ layers) 2H group-VIB TMDs, and the corresponding quantized fractional charge is the number of layers $N$ divided by 3 modulo integers, which will simply double including spin degree of freedom.
We study two-electron states confined in two coupled quantum dots formed by a short-range potential in a two-dimensional topological insulator. It is shown that there is a fairly wide range of the system parameters, where the ground state is a tripletlike state formed by a superposition of two spin-polarized states. Outside this range, the ground state is a singlet. A transition between the singlet and triplet states can be realized by changing the potential of the quantum dots. The effect is caused by a significant change in the energies of the Coulomb repulsion and the exchange interaction of electrons due to the presence of the pseudospin components of the wave function when the band spectrum is inverted.
We consider transport properties of a two dimensional topological insulator in a double quantum point contact geometry in presence of a time-dependent external field. In the proposed setup an external gate is placed above a single constriction and it couples only with electrons belonging to the top edge. This asymmetric configuration and the presence of an ac signal allow for a quantum pumping mechanism, which, in turn, can generate finite heat and charge currents in an unbiased device configuration. A microscopic model for the coupling with the external time-dependent gate potential is developed and the induced finite heat and charge currents are investigated. We demonstrate that in the non-interacting case, heat flow is associated with a single spin component, due to the helical nature of the edge states, and therefore a finite and polarized heat current is obtained in this configuration. The presence of e-e interchannel interactions strongly affects the current signal, lowering the degree of polarization of the system. Finally, we also show that separate heat and charge flows can be achieved, varying the amplitude of the external gate.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا