Do you want to publish a course? Click here

Longitudinal double-spin asymmetry for inclusive jet and dijet production in $pp$ collisions at $sqrt{s} = 510$ GeV

128   0   0.0 ( 0 )
 Added by Zilong Chang
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

We report the first measurement of the inclusive jet and the dijet longitudinal double-spin asymmetries, $A_{LL}$, at midrapidity in polarized $pp$ collisions at a center-of-mass energy $sqrt{s} = 510$ GeV. The inclusive jet $A_{LL}$ measurement is sensitive to the gluon helicity distribution down to a gluon momentum fraction of $xapprox 0.015$, while the dijet measurements, separated into four jet-pair topologies, provide constraints on the $x$ dependence of the gluon polarization. Both results are consistent with previous measurements made at $sqrt{s}= 200$ GeV in the overlapping kinematic region, $x > 0.05$, and show good agreement with predictions from recent next-to-leading order global analyses.



rate research

Read More

We report high-precision measurements of the longitudinal double-spin asymmetry, $A_{LL}$, for midrapidity inclusive jet and dijet production in polarized $pp$ collisions at a center-of-mass energy of $sqrt{s}=200,mathrm{GeV}$. The new inclusive jet data are sensitive to the gluon helicity distribution, $Delta g(x,Q^2)$, for gluon momentum fractions in the range from $x simeq 0.05$ to $x simeq 0.5$, while the new dijet data provide further constraints on the $x$ dependence of $Delta g(x,Q^2)$. The results are in good agreement with previous measurements at $sqrt{s}=200,mathrm{GeV}$ and with recent theoretical evaluations of prior world data. Our new results have better precision and thus strengthen the evidence that $Delta g(x,Q^2)$ is positive for $x > 0.05$.
We present the first measurements of the longitudinal double-spin asymmetry $A_{LL}$ for dijets with at least one jet reconstructed within the pseudorapidity range $0.8 < eta < 1.8$. The dijets were measured in polarized $pp$ collisions at a center-of-mass energy $sqrt{s}$ = 200 GeV. Values for $A_{LL}$ are determined for several distinct event topologies, defined by the jet pseudorapidities, and span a range of parton momentum fraction $x$ down to $x sim$ 0.01. The measured asymmetries are found to be consistent with the predictions of global analyses that incorporate the results of previous RHIC measurements. They will provide new constraints on $Delta g(x)$ in this poorly constrained region when included in future global analyses.
We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, $A_{LL}$, in polarized $pp$ collisions at center-of-mass energy $sqrt{s}=200$ GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC $pp$ data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-$x$ region $x>0.05$.
We report the first measurement of the longitudinal double-spin asymmetry $A_{LL}$ for mid-rapidity di-jet production in polarized $pp$ collisions at a center-of-mass energy of $sqrt{s} = 200$ GeV. The di-jet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. $A_{LL}$ results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. The measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-$x > 0.05$.
PHENIX measurements are presented for the cross section and double-helicity asymmetry ($A_{LL}$) in inclusive $pi^0$ production at midrapidity from $p$$+$$p$ collisions at $sqrt{s}=510$~GeV from data taken in 2012 and 2013 at the Relativistic Heavy Ion Collider. The next-to-leading-order perturbative-quantum-chromodynamics theory calculation is in excellent agreement with the presented cross section results. The calculation utilized parton-to-pion fragmentation functions from the recent DSS14 global analysis, which prefer a smaller gluon-to-pion fragmentation function. The $pi^{0}A_{LL}$ results follow an increasingly positive asymmetry trend with $p_T$ and $sqrt{s}$ with respect to the predictions and are in excellent agreement with the latest global analysis results. This analysis incorporated earlier results on $pi^0$ and jet $A_{LL}$, and suggested a positive contribution of gluon polarization to the spin of the proton $Delta G$ for the gluon momentum fraction range $x>0.05$. The data presented here extend to a currently unexplored region, down to $xsim0.01$, and thus provide additional constraints on the value of $Delta G$. The results confirm the evidence for nonzero $Delta G$ using a different production channel in a complementary kinematic region.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا