Do you want to publish a course? Click here

Asymptotic normality for random simplices and convex bodies in high dimensions

166   0   0.0 ( 0 )
 Added by Florian Besau
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Central limit theorems for the log-volume of a class of random convex bodies in $mathbb{R}^n$ are obtained in the high-dimensional regime, that is, as $ntoinfty$. In particular, the case of random simplices pinned at the origin and simplices where all vertices are generated at random is investigated. The coordinates of the generating vectors are assumed to be independent and identically distributed with subexponential tails. In addition, asymptotic normality is established also for random convex bodies (including random simplices pinned at the origin) when the spanning vectors are distributed according to a radially symmetric probability measure on the $n$-dimensional $ell_p$-ball. In particular, this includes the cone and the uniform probability measure.



rate research

Read More

Let $K$ be a convex body in $mathbb{R}^n$ and $f : partial K rightarrow mathbb{R}_+$ a continuous, strictly positive function with $intlimits_{partial K} f(x) d mu_{partial K}(x) = 1$. We give an upper bound for the approximation of $K$ in the symmetric difference metric by an arbitrarily positioned polytope $P_f$ in $mathbb{R}^n$ having a fixed number of vertices. This generalizes a result by Ludwig, Schutt and Werner $[36]$. The polytope $P_f$ is obtained by a random construction via a probability measure with density $f$. In our result, the dependence on the number of vertices is optimal. With the optimal density $f$, the dependence on $K$ in our result is also optimal.
The deviation of a general convex body with twice differentiable boundary and an arbitrarily positioned polytope with a given number of vertices is studied. The paper considers the case where the deviation is measured in terms of the surface areas of the involved sets, more precisely, by what is called the surface area deviation. The proof uses arguments and constructions from probability, convex and integral geometry. The bound is closely related to $p$-affine surface areas.
We prove that there exists an absolute constant $alpha >1$ with the following property: if $K$ is a convex body in ${mathbb R}^n$ whose center of mass is at the origin, then a random subset $Xsubset K$ of cardinality ${rm card}(X)=lceilalpha nrceil $ satisfies with probability greater than $1-e^{-n}$ {Ksubseteq c_1n,{mathrm conv}(X),} where $c_1>0$ is an absolute constant. As an application we show that the vertex index of any convex body $K$ in ${mathbb R}^n$ is bounded by $c_2n^2$, where $c_2>0$ is an absolute constant, thus extending an estimate of Bezdek and Litvak for the symmetric case.
Let $r=r(n)$ be a sequence of integers such that $rleq n$ and let $X_1,ldots,X_{r+1}$ be independent random points distributed according to the Gaussian, the Beta or the spherical distribution on $mathbb{R}^n$. Limit theorems for the log-volume and the volume of the random convex hull of $X_1,ldots,X_{r+1}$ are established in high dimensions, that is, as $r$ and $n$ tend to infinity simultaneously. This includes, Berry-Esseen-type central limit theorems, log-normal limit theorems, moderate and large deviations. Also different types of mod-$phi$ convergence are derived. The results heavily depend on the asymptotic growth of $r$ relative to $n$. For example, we prove that the fluctuations of the volume of the simplex are normal (respectively, log-normal) if $r=o(n)$ (respectively, $rsim alpha n$ for some $0 < alpha < 1$).
Let $K$ be an isotropic symmetric convex body in ${mathbb R}^n$. We show that a subspace $Fin G_{n,n-k}$ of codimension $k=gamma n$, where $gammain (1/sqrt{n},1)$, satisfies $$Kcap Fsubseteq frac{c}{gamma }sqrt{n}L_K (B_2^ncap F)$$ with probability greater than $1-exp (-sqrt{n})$. Using a different method we study the same question for the $L_q$-centroid bodies $Z_q(mu )$ of an isotropic log-concave probability measure $mu $ on ${mathbb R}^n$. For every $1leq qleq n$ and $gammain (0,1)$ we show that a random subspace $Fin G_{n,(1-gamma )n}$ satisfies $Z_q(mu )cap Fsubseteq c_2(gamma )sqrt{q},B_2^ncap F$. We also give bounds on the diameter of random projections of $Z_q(mu )$ and using them we deduce that if $K$ is an isotropic convex body in ${mathbb R}^n$ then for a random subspace $F$ of dimension $(log n)^4$ one has that all directions in $F$ are sub-Gaussian with constant $O(log^2n)$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا