We measure the detection efficiency of single-photon detectors at wavelengths near 851 nm and 1533.6 nm. We investigate the spatial uniformity of one free-space-coupled single-photon avalanche diode and present a comparison between fusion-spliced and connectorized fiber-coupled single-photon detectors. We find that our expanded relative uncertainty for a single measurement of the detection efficiency is as low as 0.70 % for fiber-coupled measurements at 1533.6 nm and as high as 1.78 % for our free-space characterization at 851.7 nm. The detection-efficiency determination includes corrections for afterpulsing, dark count, and count-rate effects of the single-photon detector with the detection efficiency interpolated to operation at a specified detected count rate.
We present an alternative approach to the fabrication of highly efficient superconducting nanowire single-photon detectors (SNSPDs) based on tungsten silicide. Using well-established technologies for the deposition of dielectric mirrors and anti-reflection coatings in conjunction with an embedded WSi bilayer photon absorber structure, we fabricated a bandwidth-enhanced detector. It exhibits system detection efficiencies (SDE) higher than $left(87.1pm1.3right),%$ in the range from $1450,mathrm{nm}$ to $1640,mathrm{nm}$, with a maximum of $left(92.9pm1.1right),%$ at $1515,mathrm{nm}$. Our measurements indicate SDE enhancements of up to $left(18.4pm1.7right),%$ over a single-absorber WSi SNSPD. The latter has been optimized for 1550 nm for comparison and exhibits maximum SDE of $left(93.5pm1.2right),%$ at 1555 nm. We emphasize that our technological approach has been tested with, but is not limited to, the wavelengths and absorber material presented here. It could be adapted flexibly for multi-color detector systems from the ultraviolet to the mid-infrared wavelength range. This bears the potential for significant improvements in many current quantum optical experiments and applications as well as for detector commercialization.
In this work, we present a stand-alone and fiber-coupled quantum-light source. The plug-and-play device is based on an optically driven quantum dot delivering single photons via an optical fiber. The quantum dot is deterministically integrated in a monolithic microlens which is precisely coupled to the core of an optical fiber via active optical alignment and epoxide adhesive bonding. The rigidly coupled fiber-emitter assembly is integrated in a compact Stirling cryocooler with a base temperature of 35 K. We benchmark our practical quantum device via photon auto-correlation measurements revealing $g^{(2)}(0)=0.07 pm 0.05$ under continuous-wave excitation and we demonstrate triggered non-classical light at a repetition rate of 80 MHz. The long-term stability of our quantum light source is evaluated by endurance tests showing that the fiber-coupled quantum dot emission is stable within 4% over several successive cool-down/warm-up cycles. Additionally, we demonstrate non-classical photon emission for a user-intervention-free 100-hour test run and stable single-photon count rates up to 11.7 kHz with a standard deviation of 4%.
We demonstrate the integration of amorphous tungsten silicide superconducting nanowire single-photon detectors on titanium in-diffused lithium niobate waveguides. We show proof-of-principle detection of evanescently-coupled photons of 1550nm wavelength using bidirectional waveguide coupling for two orthogonal polarization directions. We investigate the internal detection efficiency as well as detector absorption using coupling-independent characterization measurements. Furthermore, we describe strategies to improve the yield and efficiency of these devices.
We build and test a single-photon detector based on a Si avalanche photodiode Excelitas 30902SH thermoelectrically cooled to -100 deg. C. Our detector has dark count rate below 1 Hz, 500 um diameter photosensitive area, photon detection efficiency around 50%, afterpulsing less than 0.35%, and timing jitter under 1 ns. These characteristics make it suitable for long-distance free-space quantum communication links, which we briefly discuss. We also report an improved method that we call long-time afterpulsing analysis, used to determine and visualise long trap lifetimes at different temperatures.
We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous WSi and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric down-conversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of $0.6times10^4$ photons/(s$cdot$mW$cdot$MHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering.