No Arabic abstract
The Coherent Neutrino-Nucleus Interaction Experiment (CONNIE) uses low-noise fully depleted charge-coupled devices (CCDs) with the goal of measuring low-energy recoils from coherent elastic scattering (CE$ u$NS) of reactor antineutrinos with silicon nuclei and testing nonstandard neutrino interactions (NSI). We report here the first results of the detector array deployed in 2016, considering an active mass 47.6 g (8 CCDs), which is operating at a distance of 30 m from the core of the Angra 2 nuclear reactor, with a thermal power of 3.8 GW. A search for neutrino events is performed by comparing data collected with reactor on (2.1 kg-day) and reactor off (1.6 kg-day). The results show no excess in the reactor-on data, reaching the world record sensitivity down to recoil energies of about 1 keV (0.1 keV electron-equivalent). A 95% confidence level limit for new physics is established at an event rate of 40 times the one expected from the standard model at this energy scale. The results presented here provide a new window to low-energy neutrino physics, allowing one to explore for the first time the energies accessible through the low threshold of CCDs. They will lead to new constrains on NSI from the CE$ u$NS of antineutrinos from nuclear reactors.
The CONNIE detector prototype is operating at a distance of 30 m from the core of a 3.8 GW$_{rm th}$ nuclear reactor with the goal of establishing Charge-Coupled Devices (CCD) as a new technology for the detection of coherent elastic neutrino-nucleus scattering. We report on the results of the engineering run with an active mass of 4 g of silicon. The CCD array is described, and the performance observed during the first year is discussed. A compact passive shield was deployed for the detector, producing an order of magnitude reduction in the background rate. The remaining background observed during the run was stable, and dominated by internal contamination in the detector packaging materials. The {it in-situ} calibration of the detector using X-ray lines from fluorescence demonstrates good stability of the readout system. The event rates with the reactor on and off are compared, and no excess is observed coming from nuclear fission at the power plant. The upper limit for the neutrino event rate is set two orders of magnitude above the expectations for the standard model. The results demonstrate the cryogenic CCD-based detector can be remotely operated at the reactor site with stable noise below 2 e$^-$ RMS and stable background rates. The success of the engineering test provides a clear path for the upgraded 100 g detector to be deployed during 2016.
This article details the potential for using Charge Coupled Devices (CCD) to detect low-energy neutrinos through their coherent scattering with nuclei. The detection of neutrinos through this standard model process has not been accessible because of the small energy deposited in such interactions with the detector nuclei. Typical particle detectors have thresholds of a few keV, and most of the energy deposition expected from coherent scattering is well below this level. The devices we discuss can be operated at a threshold of approximately 30 eV, making them ideal for observing this signal. For example, the number of coherent scattering events expected on a 52 gram CCD array located next to a power nuclear reactor is estimated as approximately 626 events/year. The results of our study show that detection at a confidence level of 99% can be reached within three months for this kind of detector array.
Providing an early warning of a galactic supernova using neutrino signals is of importance in studying both supernova dynamics and neutrino physics. The Daya Bay reactor neutrino experiment, with a unique feature of multiple liquid scintillator detectors separated in space, is sensitive to the full energy spectrum of supernova burst electron-antineutrinos. By deploying 8 Antineutrino Detectors (ADs) in three different experimental halls, we obtain a more powerful and prompt rejection of muon spallation background than single-detector experiments. A dedicated supernova online trigger system embedded in the data acquisition system has been installed to allow the detection of a coincidence of neutrino signals within a 10-second window, thus providing a robust early warning of a supernova occurrence within the Milky Way.
Although they are best known for studying astrophysical neutrinos, neutrino telescopes like IceCube can study neutrino interactions, at energies far above those that are accessible at accelerators. In this writeup, I present two IceCube analyses of neutrino interactions at energies far above 1 TeV. The first measures neutrino absorption in the Earth, and, from that determines the neutrino-nucleon cross-section at energies between 6.3 and 980 TeV. We find that the cross-sections is 1.30 $^{+0.21}_{-0.19}$ (stat.) $^{+0.39}_{-0.43}$ (syst.) times the Standard Model cross-section. We also present a measurement of neutrino inelasticity, using $ u_mu$ charged-current interactions that occur within IceCube. We have measured the average inelasticity at energies from 1 TeV to above 100 TeV, and found that it is in agreement with the Standard Model expectations. We have also performed a series of fits to this track sample and a matching cascade sample, to probe aspects of the astrophysical neutrino flux, particularly the flavor ratio.
The European Spallation Source (ESS), presently well on its way to completion, will soon provide the most intense neutron beams for multi-disciplinary science. Fortuitously, it will also generate the largest pulsed neutrino flux suitable for the detection of Coherent Elastic Neutrino-Nucleus Scattering (CE$ u$NS), a process recently measured for the first time at ORNLs Spallation Neutron Source. We describe innovative detector technologies maximally able to profit from the order-of-magnitude increase in neutrino flux provided by the ESS, along with their sensitivity to a rich particle physics phenomenology accessible through high-statistics, precision CE$ u$NS measurements.