Do you want to publish a course? Click here

Cold Debris Disks as Strategic Targets for the 2020s

275   0   0.0 ( 0 )
 Added by John H. Debes
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cold debris disks (T$<$200 K) are analogues to the dust in the Solar Systems Kuiper belt--dust generated from the evaporation and collision of minor bodies perturbed by planets, our Sun, and the local interstellar medium. Scattered light from debris disks acts as both a signpost for unseen planets as well as a source of contamination for directly imaging terrestrial planets, but many details of these disks are poorly understood. We lay out a critical observational path for the study of nearby debris disks that focuses on defining an empirical relationship between scattered light and thermal emission from a disk, probing the dynamics and properties of debris disks, and directly determining the influence of planets on disks. We endorse the findings and recommendations published in the National Academy reports on Exoplanet Science Strategy and Astrobiology Strategy for the Search for Life in the Universe. This white paper extends and complements the material presented therein with a focus on debris disks around nearby stars. Separate complementary papers are being submitted regarding the inner warm regions of debris disks (Mennesson et al.), the modeling of debris disk evolution (Gaspar et al.), studies of dust properties (Chen et al.), and thermal emission from disks (Su et al.).

rate research

Read More

Context. Structures in debris disks induced by planetdisk interaction are promising to provide valuable constraints on the existence and properties of embedded planets. Aims. We investigate the observability of structures in debris disks induced by planet-disk interaction. Methods. The observability of debris disks with the Atacama Large Millimeter/submillimeter Array (ALMA) is studied on the basis of a simple analytical disk model. Furthermore, N-body simulations are used to model the spatial dust distribution in debris disks under the influence of planet-disk interaction. Images at optical scattered light to millimeter thermal re-emission are computed. Available information about the expected capabilities of ALMA and the James Webb Space Telescope (JWST) are used to investigate the observability of characteristic disk structures through spatially resolved imaging. Results. Planet-disk interaction can result in prominent structures. This provides the opportunity of detecting and characterizing extrasolar planets in a range of masses and radial distances from the star that is not accessible to other techniques. Facilities that will be available in the near future are shown to provide the capabilities to spatially resolve and characterize structures in debris disks. Limitations are revealed and suggestions for possible instrument setups and observing strategies are given. In particular, ALMA is limited by its sensitivity to surface brightness, which requires a trade-off between sensitivity and spatial resolution. Space-based midinfrared observations will be able to detect and spatially resolve regions in debris disks even at a distance of several tens of AU from the star, where the emission from debris disks in this wavelength range is expected to be low. [Abridged]
90 - A. Moor , A. Kospal , P. Abraham 2016
A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we present 70 and 160$mu$m observations of 31 systems in the $beta$ Pic moving group, and in the Tucana-Horologium, Columba, Carina and Argus associations, using the Herschel Space Observatory. None of these stars were observed at far-infrared wavelengths before. Our Herschel measurements were complemented by photometry from the WISE satellite for the whole sample, and by submillimeter/millimeter continuum data for one source, HD 48370. We identified six stars with infrared excess, four of them are new discoveries. By combining our new findings with results from the literature, we examined the incidence and general characteristics of debris disks around Sun-like members of the selected groups. With their dust temperatures of <45 K the newly identified disks around HD 38397, HD 48370, HD 160305, and BD-20 951 represent the coldest population within this sample. For HD 38397 and HD 48370, the emission is resolved in the 70$mu$m PACS images, the estimated radius of these disks is ~90 au. Together with the well-known disk around HD 61005, these three systems represent the highest mass end of the known debris disk population around young G-type members of the selected groups. In terms of dust content, they resemble the hypothesized debris disk of the ancient Solar System.
101 - Qiong Liu 2020
Debris disks around stars are considered as components of planetary systems. Constrain the dust properties of these disks can give crucial information to formation and evolution of planetary systems. As an all-sky survey, textit{InfRared Astronomical Satellite} (iras) gave great contribution to the debris disk searching which discovered the first debris disk host star (Vega). The iras-detected debris disk sample published by Rhee citep{rhe07} contains 146 stars with detailed information of dust properties. While the dust properties of 45 of them still can not be determined due to the limitations with the iras database (have iras detection at 60 $mu$m only). Therefore, using more sensitivity data of textit{Wide-field Infrared Survey Explorer} (wise), we can better characterize the sample stars: For the stars with iras detection at 60 $mu$m only, we refit the excessive flux densities and obtain the dust temperatures and fractional luminosities; While for the remaining stars with multi-bands iras detections, the dust properties are revised which show that the dust temperatures were over estimated in high temperatures band before. Moreover, we identify 17 stars with excesses at the wise 22 $mu$m which have smaller distribution of distance from Earth and higher fractional luminosities than the other stars without mid-infrared excess emission. Among them, 15 stars can be found in previous works.
The Hyper Suprime-Cam Subaru Strategic Program (HSC-SSP) is a three-layered imaging survey aimed at addressing some of the most outstanding questions in astronomy today, including the nature of dark matter and dark energy. The survey has been awarded 300 nights of observing time at the Subaru Telescope and it started in March 2014. This paper presents the first public data release of HSC-SSP. This release includes data taken in the first 1.7 years of observations (61.5 nights) and each of the Wide, Deep, and UltraDeep layers covers about 108, 26, and 4 square degrees down to depths of i~26.4, ~26.5, and ~27.0 mag, respectively (5sigma for point sources). All the layers are observed in five broad bands (grizy), and the Deep and UltraDeep layers are observed in narrow bands as well. We achieve an impressive image quality of 0.6 arcsec in the i-band in the Wide layer. We show that we achieve 1-2 per cent PSF photometry (rms) both internally and externally (against Pan-STARRS1), and ~10 mas and 40 mas internal and external astrometric accuracy, respectively. Both the calibrated images and catalogs are made available to the community through dedicated user interfaces and database servers. In addition to the pipeline products, we also provide value-added products such as photometric redshifts and a collection of public spectroscopic redshifts. Detailed descriptions of all the data can be found online. The data release website is https://hsc-release.mtk.nao.ac.jp/.
The detection of gas in debris disks raises the question of whether this gas is a remnant from the primordial protoplanetary phase, or released by the collision of secondary bodies. In this paper we analyze ALMA observations at 1-1.5 resolution of three debris disks where the $^{12}$CO(2-1) rotational line was detected: HD131835, HD138813, and HD156623. We apply the iterative Lucy-Richardson deconvolution technique to the problem of circumstellar disks to derive disk geometries and surface brightness distributions of the gas. The derived disk parameters are used as input for thermochemical models to test both primordial and cometary scenarios for the origin of the gas. We favor a secondary origin for the gas in these disks and find that the CO gas masses ($sim 3times10^{-3}$ M$_{oplus}$) require production rates ($sim 5times 10^{-7}$ M$_{oplus}$~yr$^{-1}$) similar to those estimated for the bona-fide gas rich debris disk $beta$ Pic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا