Distributed Weighted Matching via Randomized Composable Coresets


Abstract in English

Maximum weight matching is one of the most fundamental combinatorial optimization problems with a wide range of applications in data mining and bioinformatics. Developing distributed weighted matching algorithms is challenging due to the sequential nature of efficient algorithms for this problem. In this paper, we develop a simple distributed algorithm for the problem on general graphs with approximation guarantee of $2+varepsilon$ that (nearly) matches that of the sequential greedy algorithm. A key advantage of this algorithm is that it can be easily implemented in only two rounds of computation in modern parallel computation frameworks such as MapReduce. We also demonstrate the efficiency of our algorithm in practice on various graphs (some with half a trillion edges) by achieving objective values always close to what is achievable in the centralized setting.

Download