No Arabic abstract
Person re-identification (person Re-Id) aims to retrieve the pedestrian images of a same person that captured by disjoint and non-overlapping cameras. Lots of researchers recently focuse on this hot issue and propose deep learning based methods to enhance the recognition rate in a supervised or unsupervised manner. However, two limitations that cannot be ignored: firstly, compared with other image retrieval benchmarks, the size of existing person Re-Id datasets are far from meeting the requirement, which cannot provide sufficient pedestrian samples for the training of deep model; secondly, the samples in existing datasets do not have sufficient human motions or postures coverage to provide more priori knowledges for learning. In this paper, we introduce a novel unsupervised pose augmentation cross-view person Re-Id scheme called PAC-GAN to overcome these limitations. We firstly present the formal definition of cross-view pose augmentation and then propose the framework of PAC-GAN that is a novel conditional generative adversarial network (CGAN) based approach to improve the performance of unsupervised corss-view person Re-Id. Specifically, The pose generation model in PAC-GAN called CPG-Net is to generate enough quantity of pose-rich samples from original image and skeleton samples. The pose augmentation dataset is produced by combining the synthesized pose-rich samples with the original samples, which is fed into the corss-view person Re-Id model named Cross-GAN. Besides, we use weight-sharing strategy in the CPG-Net to improve the quality of new generated samples. To the best of our knowledge, we are the first try to enhance the unsupervised cross-view person Re-Id by pose augmentation, and the results of extensive experiments show that the proposed scheme can combat the state-of-the-arts.
Unsupervised domain adaptive (UDA) person re-identification (ReID) aims to transfer the knowledge from the labeled source domain to the unlabeled target domain for person matching. One challenge is how to generate target domain samples with reliable labels for training. To address this problem, we propose a Disentanglement-based Cross-Domain Feature Augmentation (DCDFA) strategy, where the augmented features characterize well the target and source domain data distributions while inheriting reliable identity labels. Particularly, we disentangle each sample feature into a robust domain-invariant/shared feature and a domain-specific feature, and perform cross-domain feature recomposition to enhance the diversity of samples used in the training, with the constraints of cross-domain ReID loss and domain classification loss. Each recomposed feature, obtained based on the domain-invariant feature (which enables a reliable inheritance of identity) and an enhancement from a domain specific feature (which enables the approximation of real distributions), is thus an ideal augmentation. Extensive experimental results demonstrate the effectiveness of our method, which achieves the state-of-the-art performance.
The recent person re-identification research has achieved great success by learning from a large number of labeled person images. On the other hand, the learned models often experience significant performance drops when applied to images collected in a different environment. Unsupervised domain adaptation (UDA) has been investigated to mitigate this constraint, but most existing systems adapt images at pixel level only and ignore obvious discrepancies at spatial level. This paper presents an innovative UDA-based person re-identification network that is capable of adapting images at both spatial and pixel levels simultaneously. A novel disentangled cycle-consistency loss is designed which guides the learning of spatial-level and pixel-level adaptation in a collaborative manner. In addition, a novel multi-modal mechanism is incorporated which is capable of generating images of different geometry views and augmenting training images effectively. Extensive experiments over a number of public datasets show that the proposed UDA network achieves superior person re-identification performance as compared with the state-of-the-art.
Person re-identification (re-ID) has received great success with the supervised learning methods. However, the task of unsupervised cross-domain re-ID is still challenging. In this paper, we propose a Hard Samples Rectification (HSR) learning scheme which resolves the weakness of original clustering-based methods being vulnerable to the hard positive and negative samples in the target unlabelled dataset. Our HSR contains two parts, an inter-camera mining method that helps recognize a person under different views (hard positive) and a part-based homogeneity technique that makes the model discriminate different persons but with similar appearance (hard negative). By rectifying those two hard cases, the re-ID model can learn effectively and achieve promising results on two large-scale benchmarks.
In this paper, we present a large scale unlabeled person re-identification (Re-ID) dataset LUPerson and make the first attempt of performing unsupervised pre-training for improving the generalization ability of the learned person Re-ID feature representation. This is to address the problem that all existing person Re-ID datasets are all of limited scale due to the costly effort required for data annotation. Previous research tries to leverage models pre-trained on ImageNet to mitigate the shortage of person Re-ID data but suffers from the large domain gap between ImageNet and person Re-ID data. LUPerson is an unlabeled dataset of 4M images of over 200K identities, which is 30X larger than the largest existing Re-ID dataset. It also covers a much diverse range of capturing environments (eg, camera settings, scenes, etc.). Based on this dataset, we systematically study the key factors for learning Re-ID features from two perspectives: data augmentation and contrastive loss. Unsupervised pre-training performed on this large-scale dataset effectively leads to a generic Re-ID feature that can benefit all existing person Re-ID methods. Using our pre-trained model in some basic frameworks, our methods achieve state-of-the-art results without bells and whistles on four widely used Re-ID datasets: CUHK03, Market1501, DukeMTMC, and MSMT17. Our results also show that the performance improvement is more significant on small-scale target datasets or under few-shot setting.
Person Re-identification (re-id) faces two major challenges: the lack of cross-view paired training data and learning discriminative identity-sensitive and view-invariant features in the presence of large pose variations. In this work, we address both problems by proposing a novel deep person image generation model for synthesizing realistic person images conditional on the pose. The model is based on a generative adversarial network (GAN) designed specifically for pose normalization in re-id, thus termed pose-normalization GAN (PN-GAN). With the synthesized images, we can learn a new type of deep re-id feature free of the influence of pose variations. We show that this feature is strong on its own and complementary to features learned with the original images. Importantly, under the transfer learning setting, we show that our model generalizes well to any new re-id dataset without the need for collecting any training data for model fine-tuning. The model thus has the potential to make re-id model truly scalable.